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1  Executive Summary 

Lithium-Ion batteries are becoming increasingly important in the automotive field, specifically 

electric vehicles. Lithium-Ion batteries come with concerns such as continued health and safety after pro-

duction. One of the most prevalent problems is cell mismatch, which is batteries within a pack having dif-

ferent voltage levels. If all cells do not have similar voltages, they may become damaged. Current battery 

management systems (BMS) cannot easily determine a cell mismatch. The impedance-based battery man-

agement system (IBMS) that was designed in this project can determine cell mismatch without the time 

intensive current processes. The IBMS also requires less circuitry to dissipate heat and power compared 

to current BMS.  

 

 Along with decreasing testing time, this project had several other goals. The following are goals 

of the project:  

• Lowering overall equipment size 

• Lowering testing time 

• Lowering power consumption 

• Increasing overall safety 

• Increasing accuracy in the impedance calculation 

• Increasing cell mismatch detection accuracy  

 

Many of these goals are in response to inefficiencies found in current BMS.  

 

 In terms of design objectives, the most important was to maximize the voltage response of battery 

while maintaining safety. The Lithium-Ion battery could overheat if exposed to large amounts of current. 

In order to keep the battery at safe temperatures, the IBMS was limited to injecting 20 mA of current. 

There is also a high wattage resistor used for excess heat dissipation. Some key features of this project 

are:  

• Safe current injection 

• Voltage data collection 

• Singular and sweep frequency testing 

• Impedance calculations 

 

After testing, the IBMS produced results that followed trends similar to those found in the John 

Hopkins article [3]. Further testing is still needed to fully verify the accuracy of the impedance calcula-

tions.  

 

The IBMS of this project was able to calculate the impedance of a lithium-ion battery. It collected 

the voltage and current of the battery safely and was able to reconstruct its sinusoidal waveform for the 

impedance calculation. The system was able to calculate impedance at multiple frequencies, either 

through a set level or a frequency sweep. This allowed for health trends to be graphed and observed. 
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2 Introduction 

2.1 Design Objectives and System Overview 

Lithium-ion batteries play a critical role in industry, powering machinery, tools, and electric vehi-

cles. Over time and disuse cell mismatch occurs which is when individual lithium-ion batteries have dif-

ferent voltage levels than neighboring cells. Continued use of mismatched cells leads to over-charging/-

discharging which affects the batteries overall health. To counteract this problem, battery management 

systems (BMS) are designed to monitor batteries to offset these varying voltage levels.  

 

Current BMS only measure a battery’s overall voltage and surface temperature. These are poor 

indicators of the battery’s lifespan and overall condition and do not address the inherent mismatch of 

cells. These established systems can be improved by collecting the battery’s impedance at multiple fre-

quencies. An impedance-based BMS (IBMS) can determine battery conditions more accurately and in-

depth than the conventional method. 

 

This project is a BMS that uses impedance instead of surface temperature and voltage to indicate 

the condition of a battery. Impedance at various frequencies follow patterns that reveal internal issues 

such as cell mismatch and overcharging. Finding hidden issues with this system before an accident occurs 

increases the efficiency and safety of the batteries. 

 

The project is divided into several subsystems: function generation, current generation, data col-

lection, and data processing. Function generation modifies and generates the frequency of the injected 

current. The current injection subsystem injects the modified current into the tested battery to induce and 

measure a voltage response. During data processing, the voltage response is processed with the voltage 

response across a resistive load. From these two measurements, impedance is calculated for the specific 

frequency. The process is repeated for different frequencies and then processed for trend analysis and 

looked at overall. Users can either input specific frequencies or use a general frequency sweep. The sys-

tem takes lithium-ion batteries as inputs and outputs impedance measurements. 

 

Using concepts from signal processing and circuit design, the project is designed to have the final 

technical specifications, completed by the following team member: 

• Jack Gatfield: 

o Easy to follow circuitry 

o Data processing through MATLAB 

o Safe power dissipation and overall safety 

o Frequency range for overall analysis: f ∈ [1 Hz, 1 kHz] 

o Short overall testing time: Testing Time < 45 minutes 

o Accuracy within 10% to experimental research data  

o Semi-low cost: Cost < $150 

 

• Jack Gu: 

o Safe but effective injected current through the battery: Ic ∈ [1 mA, 20 mA] 

o Flexibility in testing circuit allowing for modification in future tests 

o Safe power dissipation and overall safety 

o Frequency range for overall analysis: f  ∈  [1 Hz, 1 kHz] 

o Accuracy within 10% to experimental research data 

o Semi-low cost: Cost < $150 
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• Joseph Gozum: 

o Cross-platform data movement and processing 

o Accurate data collection to the third decimal place 

o Short overall testing time Testing Time < 45 minutes 

o Accuracy within 10% to experimental research data 

o Semi-low cost: Cost < $150 

 

With the completion of the overall project, this device and future iterations will monitor the con-

ditions of lithium-ion batteries to check for underlying issues such as overcharging and cell mismatch.  

2.2 Backgrounds and Prior Art  

Devices that use multi-cell Lithium-ion battery packs are designed for matched cells. Matched 

cells are cells that have the same capacitance, charge and discharge rates, and temperature variations. 

Matched cells ensure safe performance and efficiency. As battery packs age, little attention is given to 

verify their matched status. Using a mismatched cell will cause a cascading effect of issues including 

large heat variation, over-charging and discharging, and most notably diminishing power storage effi-

ciency.  

 

Current battery monitoring systems focus on measuring cell voltage and temperature. These 

measurements do not monitor cell mismatch, chemical and material health.  Commonly available devices 

monitor temperature and voltage during a long charging/discharging cycle. These test cycles only ensure 

that cells do not exceed preset voltage and temperature limits. Examples of available BMS are shown in 

figure 2.2a through 2.2c. 

 

Impedance measurement of a battery is not a new concept. There are experimental BMS that use 

impedance to monitor the health of a battery. These devices typically only use one frequency. One fre-

quency does not allow for trends or flexible testing.  

 

The following devices are references to commercially available BMS: 

 

• At the research lab of Professor Cengiz Ozkan of the University of California, Riverside, a Bio-

Logic Science Instruments Battery Cycler, shown in figure 2.2a, is used to determine cell mis-

match. 

 

 
Figure 2.2a: Professor Ozkan’s research device 
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• The University of California, Riverside: College of Engineering – Center for Environmental 

Research and Technology (CE-CERT) uses the NHR Battery Pack Test System – 9200 series, 

shown in figure 2.2b. The large size is a safety requirement to allow for proper energy dissi-

pation. 

 
Figure 2.2b: CE-CERT monitoring device (NHR Battery Pack Test System – 9200 series) 

 

• Wireless battery monitor, shown in figure 2.2c, are available for hobby battery testing systems. 

They are less precise as the other examples but they provide similar information about the 

tested batteries with a shorter test cycle. 

 

 

Figure 2.2c: Wireless battery monitoring systems such as these are able to be purchased and used by 

almost anyone, but still fails to address the aforementioned issues 

 

The advantages of this projects design are time, size, and power consumption compared to the available 

products. This project does not require the battery to go through a full-cycle of charging and discharging 

which reduces power usage, time and circuitry size.  
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2.3 Development Environment and Tools 

The following software and hardware tools are used: 

• Hardware 

o Oscilloscope (Techtronics TDS340) 

o Multimeter (FLUKE45) 

o Function Generator (HP 33120A) 

o Power Supply (HPE3630A) 

o Raspberry Pi 

o Arduino UNO 

o Arduino Mega 2560 

o Atmega1284P 

o Breadboards 

o Through Boards 

o Solder station, solder suction pens, solder tip cleaner 

o Circuit parts 

▪ LF353N OP-AMP 

▪ Q2N2222 BJT 

▪ Resistors 

▪ Capacitors 

▪ 5 V, 10 V voltage regulators 

▪ MAX1044 Voltage Converter 

▪ Barrel Jack 

▪ 18650 Battery holders 

▪ XR2206 function generator 

▪ AD5241 digital potentiometer 

▪ FTDI TTL-232 Serial Communication Cable 

• Software 

o MATLAB 

o Atmel Studio 7 Integrated Development Platform 

o Arduino IDE 

o Python 3.7.2 

o Eagle PCB Design Software 

o Visual Studios 2013 

o Cloud9 Development Environment 

o RealTerm: Serial/TCP 

o PuTTY Terminal Emulator 
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2.4  Related Documents and Supporting Materials 

[1] Atmel Corporation, “8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash”, 

ATMEGA1284P Datasheet, Nov. 2009 

 

[2] “Getting Started with Atmel Studio 7.” Microchip Technology, Chandler, AZ, Jan-2018. 

 

[3] J. Alveredo, “CERT C Programming Language Secure Coding Standard.” Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania, 10-Sep-2007. 

 

[4] “UM10204 I2C-bus specification and user manual.” NXP Semiconductors, Eindhoven, Netherlands, 

Apr-2014. 

 

[5] “USART and Asynchronous Communication.” Oregon State University, Corvallis, Oregon, Jul-2010. 

2.5 Definitions and Acronyms 

• BMS: Battery Monitoring System. 

• IBMS: Impedance Based battery Monitoring System 

• CE-CERT: College of Engineering - Center for Research & Technology 

• OP-AMP: Operational amplifier. 

• Digi-Pot: Digital potentiometer, an adjustable resistor set digitally. 

• ADC: Analog-to-Digital Converter 

• USART: Universal Synchronous Asynchronous Receiver Transmitter 

• I2C: Inter-Integrated Circuit 

• RS-232: Recommended Standard 232 

• CSV: Comma-Separated Value 

• BJT: Bipolar Junction Transistor. 

• SAR: Successive-Approximation Register 

• PCB: Printed Circuit Board 

• SMT: Surface Mount Technology 

• THP: Through Hole Part 

• TBC: Through Board Circuit 

• TXD: Transmit Data 

• RXD: Receive Data 

• DMA: Direct Memory Access 

• IC: Integrated Circuit 

• DC: Direct Current 

• AC: Alternating Current 

• FTDI: Future Technology Devices International 

• TTL: Transistor Transistor Logic 

• GUI: Graphical User Interface 

• CPU: Central Processing Unit 
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3 Design Considerations 

The designs constraints of this project are size, signal-type, current limitation, high-power rated 

load, accuracy, precision, data transfer speeds, and safe power dissipation.  

• Size is considered to address the issue of currently available products which are large and not 

portable.  

• Signal-type is limited to sinusoidal and square waveforms because both provide data with mini-

mal computation towards impedance.  

• Current limitation is related to the current injected to the battery. If too much current is injected to 

the battery it will heat up the battery and affect the internal chemicals.  

• High-power rating loads are needed to dissipate produced heat.  

• Accuracy is needed in all components that do signal readings. The accuracy of the differential 

probes and the ADC on the microcontroller are the biggest concerns. The data this project collects 

is in the millivolt range of voltage and any inaccuracy affects the results.  

• Precision is considered in the same components as accuracy. Any loss of precision will show up 

as errors in the results.  

• Data transfer speeds affect the overall testing time that this project is trying to minimize. The 

transfer speeds between the microcontroller and computer are set at 9600 bits per second. This 

speed allows for fast data transfer without loss in data.  

• Safe power dissipation is related to high-power rating load. In order to safely dissipate power, the 

load must be able to handle it.  

 

In order to design this system, the following points are taken into considerations: 

• Small form factor function generator to produce sinusoidal and square waveform voltages 

• Independent biasing circuit (DC Offset) for sinusoidal waveform 

• Voltage divider for square waveform 

• Limits on the current through the battery 

• Low resistance but high-power rating load 

• Reading the small voltage response across the battery after current injection 

• Required to sweep through a large range from 1 Hz to 1 KHz 

• Transfer the data collected from the microcontroller to the computer 

• Safe power dissipation in the test circuit 

• Maintain an input voltage for the current injection circuit 

• Accuracy in reading of differential probes 

• Proper and clean circuit implementation 

3.1 Assumptions  

The system this manual is based on is a prototype. The following are assumed: 

• The batteries used are 18650 Lithium-Ion batteries. 

• The data provided by the John Hopkins experiment give an accurate reflection on the condition of 

the battery.  

• The BMS is given time to complete the full frequency sweep.  

• The batteries are assumed to remain safely connected to the system until testing is completed. 

• The testing is assumed to be conducted at room temperature. 
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3.2 Realistic Constraints 

3.2.1 Voltage Supply 

Safely supplying voltage is a circuit design and implementation constraint. Voltage needed to be 

supplied in environments with a simple wall outlet. This required the implementation of a barrel jack and 

DC power adapter to provide voltage to the system. 

3.2.2 Microcontroller Processor and Memory Speed 

Microcontrollers operate on a set processor speed. This speed had to be taken into account for 

developing the data acquisition code to ensure proper functionality. This speed also had to be taken into 

account when deriving the data sampling frequency of the ADC. 

3.2.3 Battery Safety 

Batteries are very volatile and unsafe if improperly handled. A safe testing environment required 

that less than 20 mA could be injected into the battery. The load resistor must dissipate the power generated. 

3.2.4 Ability to Capture Induced Battery Voltage Response 

Batteries are volatile and unsafe. The circuit is designed to ensure safety when testing batteries.  

3.3 System Environment and External Features 

3.3.1 Power 

The Printed Circuit Board (PCB), Through Board Circuit (TBC), and the breadboard version of the 

circuit require external power. The PCB and the TBC are powered through a 12 V DC power adapter. The 

bread board circuit is powered through desktop power supplies. 

3.3.2  User Interface 

The user interface uses the PuTTY Terminal, Python Command Window, and MATLAB. The 

PuTTY Terminal establishes communication between the Microcontroller and the user’s computer. Python 

formats the gathered data. MATLAB process the data generated and presents the results to the user. 

3.3.3 Computer to Microcontroller interfacing 

PuTTY and RealTerm are used as terminal interfaces for communication between the user com-

puter and the microprocessor. 
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3.4 Industry Standards 

[1] J. Alveredo, “CERT C Programming Language Secure Coding Standard.” Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania, 10-Sep-2007. 

 

[2] “RS232 Interface Module.” Solartron metrology, Bognor Regis, England, Jun-2010. 

 

[3] “UM10204 I2C-bus specification and user manual.” NXP Semiconductors, Eindhoven, Netherlands, 

Apr-2014. 

 

[4] ISO/IEC 1475: UART. Rev. 2.40-28 April 2015 

3.5 Knowledge and Skills 

Joseph Gozum: 

• Previously learned: 

o EE/CS120B - Intermediate Embedded Systems 

▪ Embedded system programming and peripheral interfacing 

o EE128 - Data Acquisition, Instrumentation, and Process Control 

▪ Embedded system programming, data acquisition, and communication 

o EE01A/B 

▪ Circuit design and circuit simulation 

o EE100A/B - Electronic Circuits 

▪ Circuit design 

o PuTTY Terminal Emulator 

▪ An interface to receive and interact with connected devices using different com-

munication methods with a terminal-like design 

• Learned: 

o Serial communication methods and standards 

▪ Learned how to properly implement the different methods 

o Digital logic for controlling peripherals 

o Python for data manipulation and automation 

▪ Learned about the ability of Python and supporting libraries 

Jack Gu: 

• Previously Learned: 

o EE100A/B: Electronic Circuits 

▪ Circuit design for the hardware components of the project 

▪ Understanding of tradeoffs in performance for different designs 

o EE123: Power Electronics 

▪ Power flow and consumption in the hardware components of the project 

▪ Use of LTSPICE for various circuit simulations 

o MATLAB (EE110A/B, EE105, EE141, and some self-taught) 

▪ Design algorithms in developing the phase calculating algorithm of our project 

▪ Debug MATLAB programs that are the main processing unit of our project 

o EE001A/B 

▪ Circuit design, implementation, and testing  
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• Learned: 

o PCB Soldering 

▪ How to safely solder components onto a test board and PCB board 

o LabVIEW 

▪ How to run LabVIEW with MATLAB for implementation of GUI in the future 

▪ Handle user interface and user inputs 

Jack Gatfield: 

• Previously learned: 

o EE/CS120B: Intermediate Embedded Systems 

▪ Embedded system program, setup, and interfacing 

o EE128: Data Acquisition, Instrumentation, and Process Control 

▪ Embedded system programing, integration and data acquisition, and code optimi-

zation 

o EE100A/B: Electronic Circuits 

▪ Circuit design, BJT operation, proper lab and testing procedure of BJT circuits 

o EE123: Power Electronics 

▪ Circuit design, power flow and consumption, using LTspice for circuit simulation 

• Learned: 

o Python programming 

▪ Needed to developed code to handle data formatting from the serial communica-

tion to the MATLAB data read; eventually taken over by Joseph Gozum due to 

his larger knowledge base of Python 

o MATLAB (EE20, EE110A/B, EE105, EE141, and self-taught) 

▪ Data processing 

o PCB design and manufacturing 

▪ Learned how to use Eagle PCB Design Software to implement a PCB of the cir-

cuit. This required learning how to use the program, learning about best practices 

for PCB design, developing the full circuit to implement, and learning how to 

properly send it to printing. 

o AutoCAD 2019 Design 

▪ Learned how to develop a 3D model to be used as a case for the future PCB. This 

required learning the program and then properly implementing the box to the 

needed dimensions. 

o PuTTY Terminal Emulator 

▪ Learned a basic understanding of how the putty terminal works in order to obtain 

data from the circuit. This task was left mostly to Joseph Gozum due to his prior 

knowledge of the program. 
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3.6 Budget and Cost Analysis 

The cost breakdown in Table 1.6.1 shows the cost of the final system without the PCB. With the 

parts below, and the needed PCB, one can fully implement the system.  

 

Parts in final circuit design 

Part QTY. Cost per unit 

12V DC Power Adapter 1 $8.95 

Barrel Jack 1 $1.50 

0.33uF non polarized capacitor 2 $1.50 

0.1uF non polarized capacitor 4 $1.30 

5V voltage regulator [L7805C] 1 $0.75 

10V voltage regulator [BA17810] 1 $0.84 

Voltage inverter [Max1044CPA+] 1 $3.40 

Potentiometer (Digital [AD5242]) 1 Digital: $2.68 

Function generating chip [XR2206] 1 $7.95 

2 level dip switches 2 $1.20 

NPN BJT 1 $3.00 

18650 battery holders [2n2222a] 1 $1.95 

18650 battery Test Batch $5.00 

Op amp [LF353] 1 $1.00 

Microcontroller [Atmega1284p] 1 $5.00 

Programmer and cable 1 $75.00 

Program header [IEEE UCR programmer header] 1 $1.00 

Serial communication cable [FTDI Serial TTL-232 USB Cable] 1 $17.95 

Resistors (1Ω to 20kΩ) 25 $1.20 to $3.00 

Table 1.6.1 

 

The final cost of the project is low when compared to current available BMS. The main cost of 

this design is the PCB. PCB printing and implementation can be minimized if the system is put into mass 

production, or a cheaper printing establishment is found.  
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3.7 Safety 

This project has several safety hazards in the final prototype. The first concern is the danger from 

directly injecting current into a lithium-ion battery. If the amount of current entering a battery exceeds a 

certain threshold (20 mA), the battery could react negatively and potentially melt or even explode. Cur-

rent entering the battery is controlled so that the current magnitude is large enough to induce a voltage 

response while low enough to not damage the battery. Transient responses (Unwanted spikes in current) is 

also addressed through switches and lowering the frequency sweep step size. 

  

The second concern is the issue of heat buildup when the system is running. Lithium-ion batteries 

react negatively to constant exposure of heat. This constant heat generation stems from the inherent long 

testing time of our system as well as the need for safe power dissipation after the current passes through 

the battery. Methods implemented to address heat issue include heat sinks, high power rated components, 

and a power regulating network. The PCB implementation reduces the possibility of wire meltdown as 

well as allowing more airflow into the circuit, reducing heat buildup. The power regulating network al-

lows for the system to run for long periods of time without extensive heat buildup from the power 

sources. The high-power rating components reduce the risk of component meltdowns as well as allow en-

ergy to be dissipated efficiency.   

 

The final concern is the issue of unwanted transient responses. Transient responses in the system 

are defined as sudden spikes in voltage or current. Transient responses appear in the system when the bat-

tery is either connected or removed from the system and when the switch in frequency values is too large 

(> 50 Hz). Stopping transient responses was done in two ways: Reduction of frequency step sizes and re-

moval of the battery from the circuit when switching frequencies. 

3.8 Performance, Security, Quality, Reliability, Aesthetics etc.  

This project requires precision and accurate reading of voltage signals in the millivolt range. The 

computation for impedance is used in this project is based off these readings. The components of main 

concern for performance are the differential probes and the ADC. 

 

Next is security concerns. This product does not have any security and it does not require it in order 

to function. This project does have quality standards that it must meet.  

 

The device must be able to product quality results that measure up to widely available products. This 

is related to its ability to gather precise and accurate data which is then used determine cell health and 

mismatch. The IBMS also has reliability standards.  

 

This IBMS must be able to support or replace existing products. Therefore, its reliability must be 

greater than or equal to those same products. Another important concern for this project is its size.  

 

The IBMS must have a small size and silent aesthetic to address the opposite seen in widely available 

products.   
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Finally, there is an importance on control for this project. The project involves working with analog 

signals but the actual reading is digital. Components that work with the analog signal can also be digitized 

to reduce error in using analog components. Analog potentiometers and switches that would be used can 

be replaced with digital potentiometers and switches. 

3.9 Documentation 

To maintain and generate documentation for the senior design work, a Google Drive folder was 

made that contains all technical specifications and instructions. During meetings and experiments, all 

events were logged. The file would be titled and placed with an appropriate name and in the proper sub-

folder. For handwritten notes dedicated notebooks were used and later typed or scanned. Hand written 

notes were few so most of the documentation was typed and stored directly through documents on the 

Google Drive.  

3.10 Risks and Volatile Areas 

This project has a battery that is being actively injected with current. This process can be very 

dangerous if handled incorrectly. To help mitigate the safety risk for this system, precautions were taken 

with current levels and power dissipation. The current was kept below 20 mA and the load resistor has a 

high-power rating. In future iterations a way to disconnect the battery automatically would be a further 

step for system safety.  

 

Another volatile area in the design is the BJT that converts the voltage signal to a current signal. 

If the frequency of the voltage signal is changed rapidly in magnitude the BJT will be damaged and cause 

a current surge. To mitigate this, a slow manual frequency stepping progression was used for data collec-

tion. In the future an automatic frequency sweep using a digital potentiometer controlled by the microcon-

troller will be used.  
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4 Experiment Design and Feasibility Study 

4.1 Experiment Design 

4.1.1 Current shaping viability experiment  

Objective: Test whether it is possible to send a sinusoidal current through the 2N2222 transistor and 

check if the sinusoidal waveform is --intact when used with a test battery. 

 

Setup: The following setup was used to test the shape of the current under various frequencies. 

 

 
Figure 4.1.1a: Physical setup of the test circuit for the experiment 

 

 
Figure 4.1.1b: Test schematic for the experiment in LTspice 
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Procedure: 

1. Connect the function generator to the test circuit (Black wire in Figure 4.1.1a) 

2. Connect the common ground to the circuit (Refer to Figure 4.1.1b). 

3. Connect the negative terminal of the test battery and indicate the section where you would con-

nect the positive terminal. 

4. In those two terminals listed in step 3, connect the oscilloscope probes across the same terminals. 

5. Turn on the function generator and slowly increment the frequency while retaining the voltage 

input with the input: 2 + sin(𝜔𝑡) 𝑉 

6. Record data on the oscilloscope 

7. Repeat for different frequencies until satisfied. 

 

Expected Result: The signal across the battery is expected to be noisy but still maintain a sinusoidal 

shape.  

 

Result: The following was obtained: 

 

 
Figure 4.1.1c: Current flowing the battery (top) and the input voltage (bottom) at 100 Hz. 

 

 
Figure 4.1.1d: Current flowing the battery (top) and the input voltage (bottom) at 1000 Hz 

 

Looking at the figure 4.1.1c and 4.1.1d, the signal retains a sinusoidal waveform in the battery regardless 

of frequency. 
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4.1.2 Floating Node experiment  

Objective: Examine the voltage of the input and output nodes for the current injection circuits BJT and 

check for floating points. 

 

Setup: The following setup was used to check for floating nodes in our current injection module: 

 

 
Figure 4.1.2a: Physical setup of our floating node experiment 

 

Procedure: 

1. Connect appropriate ground terminals 

2. Connect differential voltage probes (Figure 4.1.2a blue wire) at the collector of the transistor and 

ground 

3. Connect a power supply (Figure 4.1.2a black wire) which should be a DC input voltage. 

[0 V, 5 V] 

4. Connect the battery in series in between the resistive load and BJT (Figure 4.1.2a yellow wire) 

5. Record the voltage at the collector for all DC values in the sweep. 

 

Expected Result: Simulations shown below suggest the possibility of a floating node voltage. 

 

 
Figure 4.1.2b: LTspice schematic for simulations of a floating node 
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Figure 4.1.2c: Output for the collector voltage and current 

 

A floating node voltage is expected at the collector component of the transistor. 

 

Result: The graph below displays all induced responses from input voltages ranging from 0 to 3.5 V: 

 

 
Figure 4.1.2d: Output at the collector for both voltage and currents 

 

There appears to be no floating voltage nodes when looking at Figure 4.1.2d. 
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4.1.3 Amplifier accuracy test 

Objective: Test the accuracy and precision of the differential amplifier module when applying various 

DC signals as inputs. 

 

Setup: The following setup was implemented to test the functionality and accuracy of the amplifier: 

 

  
Figure 4.1.3a: LTspice schematic for simulation of the operational amplifier 

 

 
Figure 4.1.3b: Physical implementation diagram of the differential amplifier 

 

Procedure: 

1. Construct the circuit and connect all ground terminals. 

2. Apply the appropriate power supplies and input voltages to the circuit. 

3. Record the results of the output and test various DC values to be differentiated. 
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Expected Result: Simulations suggested accurate calculations of the amplifier. Slight errors were still 

expected. 

 

 
Figure 4.1.3c: Initial Test for  𝑉2 = 0.05 𝑉; 𝑉1 = 0.03 𝑉; 𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 1 𝐾Ω; 

 

When looking at the LTspice simulations, an output was expected that follows the gain equation: 

 

𝐴 =
𝑅3

𝑅1

(𝑉+ − 𝑉−); 𝑅3 = 𝑅4; 𝑅1 = 𝑅2 

 

Result: The output is close to what was expected in the gain calculation due to the high precision of our 

resistors (±2%). For example: 

𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑉+ − 𝑉−) = 1.017 𝑉; 

𝑉− = 1 𝑉; 𝑉+ = 2 𝑉. 𝑁𝑂𝑇𝐸: 𝑇ℎ𝑖𝑠 𝑤𝑎𝑠 𝑡𝑒𝑠𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑠 
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4.1.4 Biasing Circuit Output Test 

Objective: Test whether the biasing circuit successfully biases the inherent function generator chip cor-

rectly. Correct biasing allows for proper function of the current injection module. 

 

Setup: 

  
Figure 4.1.4a: Physical implementation of the biasing circuit to be tested  

 

 
Figure 4.1.4b: LTspice Schematic for the biasing circuit to be tested 

 

Procedure: 

1. Setup the biasing circuit shown in Figure 4.1.4a without connecting the power supply and the in-

put. 

2. Connect the power supply and then the input voltage. 

3. Record the output. 

4. Change capacitances (C4 in Figure 4.1.4b) and repeat step 3, taking note of the shape and voltage 

swing. 

 

Expected Result: In order to predict the results of the experimental system, simulations were performed 

and yielded the following results: 
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Figure 4.1.4c: LTspice simulation output for a 1 Hz biased signal. 

 

 
Figure 4.1.4d: LTspice simulation output for a 1 kHz biased signal. 

 

The results from both LTspice simulations (Figure 4.1.4c and Figure 4.1.4d) suggest that biasing was suc-

cessful across all frequencies. It should be noted that voltage swing decreases proportionally with the ca-

pacitance. 

 

Result: Physical testing confirmed expected results. Because of tradeoff when looking at voltage and ca-

pacitance swing, the 100 µF capacitor served as the optimal capacitance value for the circuit. The capaci-

tor results in a 10% drop in swing (1.8 VPP) while maintaining the sinusoidal shape needed for all fre-

quency ranges. 
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4.1.5 Frequency Sweep Test  

Objective: Test whether the function generator chip can generate sinusoids within frequency range 10 Hz 

to 1 kHz. 

 

Setup: The figures below show the schematic and physical implementation of the test circuit respectively.  

 
Figure. 4.1.5a: Schematic of our setup of the function generator chip 

 

 
Figure. 4.1.5b: Physical implementation of our test setup 

 

Procedures: 

1. Assemble the circuit shown in Figure 4.1.5a 

2. Replace the digital potentiometer (Red box in Figure 4.1.5a) with an analog potentiometer. This 

is done to simplify testing for manual frequency adjustment. 

3. Adjust the potentiometer to the lowest resistance. 

4. Record the output of the sine wave output pin. 

5. Adjust potentiometer so that the next frequency is an increment of experiment choice. 

6. Record the output of the sine wave output pin. 

7. Repeat steps 5-6 as necessary, until all experiment frequencies are tested. 

 

Expected Result: The function chip should produce the desired frequency range. Referencing the user 

manual for the chip states that the chip can handle the range for this experiment. The range of interest for 

this test is between 10 Hz to 1 MHz.  
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Result: The results reflect expectations, sinusoids within the desired frequency range were produced. 

However, to produce the whole frequency range one capacitor value needed to be changed.  

4.1.6 Initial Data Reading Experiment  

Objective: Replicate the experiment in section 4.1.9 but replace the Arduino Uno with the Atmega1284P 

that uses new code developed for it. 

 

Setup: The following is the test circuit for Initial Data Reading Experiment 

 

 

 
Figure 4.1.6a: Physical implementation of test circuit 

 

Procedures: 

1. Assemble Circuit above 

2. Set frequency of function generator to desired value 

3. Set parameters for serial communication (e.g., speed, polarity, data, etc) 

4. Press button to start data acquisition 

5. Save terminal output to text file 

6. Run formatting Python script 

7. Manually analyze the data 

 

Expected Result: Similar results to the results from section 4.1.9 

 

Result: The voltage response of the battery was measured after current was injected; the values of the test 

can be found below in Figure 4.1.6b. 
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Voltage Reading 

3.78299120234604 

3.67546432062561 

3.63147605083089 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

Figure 4.1.6b: Voltage equivalent value of captured ADC values at 13 Hz 

 

The results are expected, the value hovers around the nominal voltage of the test battery. Changes in the 

voltage response across the battery changes with the battery.  

4.1.7 MATLAB Python Cross-platform Experiment  

Objective: Have a MATLAB script call a python script that will format the collected data into a numeri-

cal format.  

 

Setup: Raw data from the terminal in text files in the set file location with the Python script and 

MATLAB in the same directory. 

 

Procedure: Code and properly set up the windows environment to be able to have MATLAB call the py-

thon script. 

 

Expected Result: Have the MATLAB script run the data formatting script in order to reduce time in data 

processing. 

 

Result: The python script was not able to run in the Windows environment. MATLAB did indeed call the 

script properly but the python script would fail. Debugging was attempted for many hours. It was settled 

that the data had to be formatted by the Python Script in a Linux environment and then transferred to 

MATLAB. 

  



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

31 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

4.1.8 Current Maximization Experiment  

Objective: Maximize the current flowing through the test battery while maintaining safe power dissipa-

tion and battery safety. 

 

Setup: The following is a schematic of the test circuit and a physical implementation. 

 

 
Figure 4.1.8a: Schematic setup of two current injection circuits used for testing and comparisons of input 

currents 

 

 
Figure 4.1.8b: Physical implementation of one current injection circuit. Limited materials prohibited sim-

ultaneously building and testing two current injection circuits. 

 

Procedures: 

1. Assemble the original current injection circuit (Left schematic of Figure 4.1.8a). 

2. Prepare the battery for testing (Refer to Figure 4.1.8b’s yellow wires). 

3. Using the function generator, send a voltage with an arbitrary frequency through the BJT (Figure 

4.1.8b’s black wire). For the magnitude of the voltage, send in a voltage with an offset of  

4. 2 V and an independent swing of 1 V. 

5. Record the current flowing through the current injection circuit (Figure 4.1.8b’s blue wires) 

6. Safely disconnect the circuit and assemble the new experimental current injection circuit (Figure 

4.1.8a’s right schematic). It is highly recommended to keep the same wiring format so that the 

same color coding can be used to maintain clarity and safety. 

7. Repeat steps 1-4 for the new current injection circuit. If the current recorded is still not satisfac-

tory for user’s needs, repeat with new schematic setups. 
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Expected Result: Several systems were simulated to test for maximum current values. 

 
Figure 4.1.8c: Output of the original current injection circuit (green) and the experimental setup (green). 

 

 
Figure 4.1.8d: Output of the other experimental setups that never made it past simulations. The Darling-

ton configuration (Blue) and the Wilder current mirror output (Green). 

 

 
Figure 4.1.8e (Bottom): Wilder current mirror schematic used for simulation (Left) and the Darlington 

current amplifier schematic used for simulation (Right) 
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The expected results are current in the 10 to 15 mA range and a sinusoidal output waveform. Two 

different current sources were simulated to see if they met the specifications set for this project. The sche-

matics can be seen in Figure 4.1.8e and the outputs can be seen in Figure 4.1.8d. The Darlington and Wil-

der current sources were not physically tested because they did not meet required specifications. The Dar-

lington circuit cannot maintain a sinusoidal output waveform and the Wilder did not produce the current 

magnitude needed. However, the circuit schematic shown in Figure 4.1.8a produced the output of Figure 

4.1.8c and called for physical tests. While the output current from circuit in Figure 4.1.8a in simulations 

has incredibly high current magnitude, in the physical implementation the current magnitude is lower.  

 

Result: Testing of schematic in Figure 4.1.8a produced current in the desired magnitude range. Initially, 

the current output of the current injection circuit was in the µA range [100 µA, 600 µA], this magnitude 

cannot induce a voltage response from the battery. The low current was caused by the circuit setup and 

current readings being done incorrectly. After fixing the issues, current varied in the mA range [9 mA, 15 

mA]. 

4.1.9 Arduino ADC Testing  

Objective: Test the output of the prototype to see if the responses induced produced valid test data that 

reflect accurately the condition of the battery. 

 

Setup: Figure 4.1.9a is a diagram of the Arduino UNO setup. 

 
Figure 4.1.9a: Schematic of our testing setup 

 

Procedures: 

1. Setup test circuit as shown in Figure 4.1.9b. 

2. Connect the corresponding serial communication cable (also powers Arduino Uno) 

3. Adjust the frequency and note the value of said frequency. 

4. Connect the testing battery through to the current injection circuit module. 

5. Record the average voltage across the battery 

6. Record the average current through the battery branch 

7. Repeat steps 3-6 as desired. 
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Expected Result: We expected the outputs to be minimal in difference but still sinusoidal in nature. This 

is because the impedance of the test battery is naturally low, so as a result of that, we expect the readings 

being processed to be slight deviations from the nominal battery voltage. And after running it through a 

excel macro that calculates the magnitude of the battery’s impedance, we expect it to be incredibly mini-

mal. 

 

Result: The following is the impedance calculated at specified steps in the frequency range of the project. 

Figure 4.1.9b is the impedance versus frequency plot while Figure 4.1.9b is a table of the impedance at 

the corresponding frequency.  

 
Figure 4.1.9b: Output of the test battery impedance magnitude over the entire frequency range. 
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Impedance Calculation of a “Good” Battery 

Frequency (Hz) Impedance 

10 0.127 

25 0.127 

50 0.124 

75 0.1278 

100 0.122 

200 0.121 

300 0.120 

500 0.120 

600 0.119 

700 0.118 

750 0.119 

800 0.119 

900 0.119 

1000 0.118 

Figure 4.1.9c: Hand calculations of impedance placed in a spreadsheet. 

 

The results are inconclusive. While the ADC data acquisition works perfectly, there are still flaws in the 

results. While the trend of the magnitude (Figure 4.1.9a) follows the trends of the experimental data that 

this project is based; frequency and impedance being inversely correlated with each other, the impedance 

magnitude is significantly different. 
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4.1.10 Arduino to MATLAB Data Acquisition and Processing Experiment  

Objective: Test to make sure what we did by hand in Arduino ADC testing can be automated and pro-

duce equivalent if not better results as well as define our testing procedures. 

 

Setup: The following is the test circuit using the Arduino Uno in place of the Atmega1284P to make sure 

the steps from data acquisition to processing is able to produce expected impedance values.  

 

 
Figure 4.1.10a: Arduino setup used for testing 

 

Procedure: 

1. Connect differential amplifier output for battery to A0 as shown in figure 4.1.10a. 

2. Connect differential amplifier output for current reading resistor to A1 as shown in figure 4.1.10a. 

3. Set desired frequency for testing 

4. Connect serial/power cable 

5. Open communication port using PuTTY 

6. Save the output to a text file 

7. Convert from ADC values to voltage equivalent and save to spreadsheet 

8. Read into MATLAB and run scripts 

 

Expected Result: The outputs to be sinusoidal in nature with less than 5% offset to actual value. Calcu-

lated impedance should match data in the reference study within 5%.  

  

Result: The collected data was processed and the final output can be seen in figure 4.1.10b. Data collec-

tion, transmission, and processing worked properly. 



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

37 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

 
Figure 4.1.10b 

 

The collected data was sinusoidal as shown in the top graph of figure 4.1.10b. The data gathered 

by the Arduino was communicated and processed. The data was processed to obtain the battery’s imped-

ance as shown in the bottom graph of Figure 4.1.10b. This calculated data was similar to the data in the 

reference study.    
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4.1.11 Arduino IDE and MATLAB Tool Box Experiment  

Objective: Test whether the Arduino toolbox for MATLAB is suitable for our data capture needs as well 

as see if the Arduino Analog to Digital Converter (ADC) will meet our needs. 

 

Setup: Figure 4.1.11a is a diagram of the setup used to perform this experiment. 

 

 
Figure 4.1.11a: A simple variable resistance branch that goes from 5V to ground with a potentiometer. 

Pins A0 and A1 of an Arduino Mega 2560 are connected in order to capture the voltage drop. 

 

Procedures: 

1. Assemble the circuit shown in Figure 4.1.11a 

2. Check the voltage level of the circuit using a multimeter 

3. Check corresponding Arduino Serial Terminal and MATLAB variable to ensure accuracy of 

ADC and that communication is established. 

4. Check speed of data acquisition and MATLAB data processing 

5. Check speed of ADC, communication, and MATLAB data handling 

 

Expected Result: Results from the Arduino ADC and communicated through the serial port would be 

correct but the communication would be slow but maybe manageable. 

 

Result: The results from the Arduino ADC were correct but the communication was extremely slow. 

Communicating the data to MATLAB and having MATLAB build the data arrays was too slow and inef-

ficient to satisfy the project requirements.  
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4.1.12 MATLAB Data Processing Code Test  

Objective: Using test data files the object was too  

• Dynamically pull in the data to be stored in MATLAB arrays 

• Be able to average the multiple arrays while not eating up processing time and memory 

• Be able to output the multiple arrays and the extrapolated data in a MATLAB Figure 

 

Setup: Excel files full of dummy data and a MATLAB script in the same file location. 

 

Procedure: Using test data similar to figure 4.1.12a, create and debug code to accomplish the objectives.  

 

1 4.15852902 

2 4.09070257 

3 4.85887999 

4 5.7568025 

5 5.95892427 

Figure 4.1.12a: Example data 

 

Expected Result: Produce a MATLAB script that pulled in data from an Excel file. 

 

Result: Created a MATLAB function, with a snippet shown in figure 4.1.12b, that dynamically made file 

names and then pulled in the data from the corresponding file in order to manipulate and process it. The 

function architecture was chosen due to its handling of intermediate variables being better for memory 

management. 

 

 
Figure 4.1.12b: Snippet of the final developed code 
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4.1.13 PCB Development 

Objective: Learn and eventually implement circuitry in Eagle PCB Design software 

 

Setup: Installed Eagle PCB Design. Watched YouTube videos and read articles about proper Eagle use 

and proper PCB design procedures. 

 

Procedure:  

1. Start on dummy circuit to gain an understanding of the program and proper implantation meth-

ods. One circuit is shown in figure 4.1.13a. Another is shown in figure 4.1.13b.  

2. Send the design, shown in figure 4.1.13c, to a PCB printer to test design practices 

3. Start on project implement, shown in figure 4.1.13e, to develop the full project circuit. 

4. Send the design to a PCB printer 

 

 
Figure 4.1.13a: First circuit implemented in Eagle. Developed with the help of a tutorial video 
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Figure 4.1.13b: Test circuit in Eagle to test printing capabilities and needs 

 
Figure 4.1.13c: Top layer of test circuit printed by EE shop in Chung Hall 

 
Figure 4.1.13d: Bottom layer of test circuit printed by EE shop in Ching Hall 
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Figure 4.1.13e: Final project circuit currently implemented in Eagle. 

 

 
Figure 4.1.13f: Final printed circuit for the project 

 

Expected Result: Quick and easy learning of the Eagle program that would lead to a quick and easy im-

plementation of the project circuit. 

 

Result: The circuit of Figure 4.1.13a provided a basic understanding of the PCB program. The circuit of 

4.1.3b was the first test design for the project. It was designed to implement a power system for the cir-

cuitry. When printed, shown in figure 4.1.13c and 4.1.13d, the shortcomings of the EE shop printing for 

our system was shown. The complexity and sensitivity of our circuit made printing difficult.  Figure 

4.1.13e shows the final circuit implemented in Eagle with Figure 4.1.13f showing the printed version of 

the system. Implementation of a prototype PCB board for the project was achieved the development pro-

cess was very difficult with printing being a major difficulty due to the complexity of the circuitry and 

mixed part types.  
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4.2 Experiment Results, Data Analysis and Feasibility  

The project was proven to be feasible through the performed experiments. The experiments show 

that that the data collection system gives similar values to the experiment this is based on. The hardware 

modules are reliable, safe, and communication can be established between the microcontroller and user’s 

computer.   

 

Experiments 4.1.1, 4.1.2, and 4.1.4 proved that the required current could be safely generated and 

injected into the battery. Experiment 4.1.5 further proved current generation’s feasibility because it 

proved that the frequency range was possible to generate. Experiment 4.1.3 proved that the differential 

amplifier configuration worked properly and its precision was enough for our purposes. Experiments 

4.1.6, 4.1.7, 4.1.9, 4.1.10, 4.1.11, and 4.1.12 proved that data collection, formatting, and processing was 

possible. They also proved that theoretical and experimental data was similar through development. Ex-

periment 4.1.13 took the results of the previous experiments and developed the final system. It developed 

the full circuity and then designed and implemented a PCB to finalize the project.   

 

The current injection induces a voltage response by the test battery. This response can be accu-

rately captured, stored, and transmitted to allow for processing. This processing allows for the battery 

health trends to be discovered and explored. This is the basis of the project. The experiments proved this 

process is possible and this project is feasible. 
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5 Architecture and High-Level Design 

5.1 System Architecture and Design 

Figure 5.1.1 shows the high-level block diagram of the system. It shows how the various subsys-

tems interact with each other and their basic connections.  

 

Figure 5.1.1 Block diagram for project circuitry 

   

HARDWARE: 

Variable frequency Sine and Square wave generation: The variable frequency sine/square wave gener-

ation component is used to power the current generation component of the system. The ability to switch 

frequencies within f ∈ [1 Hz, 1 KHz] allows for various impedance measurements. 

 

Current generation and injection: The current injection induces a voltage response at a set frequency 

within the battery. This response is captured by the differential reading component. The current injection 

module needs to be able to provide a current of the appropriate sinusoidal shape and magnitude i ∈ [1 mA, 

20 mA]. 

 

Differential reading: Differential probes are placed in specific parts of the test circuit in order to measure 

the appropriate data. The differential reading component gathers data on battery voltage and value of the 

injected current. The current value is measured via the voltage of a small load resistor in series with the 

overall module. These voltage readings are then processed in order to obtain impedance data. 

 

Power distribution and voltage level division: Power is taken from a 12 V power adapter and is then 

placed into the circuit. This provides a 12 V line that powers the function chip and a line that can be ma-

nipulated to get other voltage levels. A 5 V voltage regulator was used to produce a five-volt voltage line 

for the microcontroller, biasing circuitry, and digital potentiometer. A 10 V regulator was used to produce 

a 10 V voltage line for the differential amplifiers and the voltage inverter. A negative inverter also uses the 

10 V voltage line to provide a -10 V supply voltage to the differential amplifiers.  

 

Microcontroller: The microcontroller is the initial data processor. Using the built-in 10-bit ADC, the volt-

age values from the differential probes are quantized. Immediately after being quantized, the values are 

then stored in an array waiting to be transmitted to a computer connected by Universal Serial Bus (USB). 
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The USB cable used contains a Future Technology Devices International (FTDI) FT232RL USB/Serial 

chip that takes in Transistor-Transistor Level (TTL) signal logic values that the microcontroller outputs 

when using USART. The chip then produces a signal based on the USART initialization on the microcon-

troller that the computer can read.  

 

SOFTWARE: 

Serial Communication: The microcontroller reads the ADC data and builds an array of values. It then 

sends the array via USART to a terminal and is captured on the processing computer. 

 

Data Formatting: The data sent by the microcontroller and captured through the terminal cannot be un-

derstood directly by MATLAB. The file has to be formatted using a Python script and a visual basic macro. 

The formatting code converts the microcontroller data into a voltage value that can be used by MATLAB 

to determine impedance. 

 

Cell Impedance Calculation: The system provides data for the MATLAB code to calculate the battery 

impedance. The code takes out the nominal voltage of the battery, corrects the data to account for the dif-

ferential amplifier gains, and then averages the trials to reduce noise influence on the results. Once the 

average battery voltage values and current values are computed, the impedance can be calculated. First, a 

sinusoidal approximation of the voltage array is created in order to calculate the phase shift of the voltage. 

After this calculation is performed the magnitude of the impedance is calculated and the real and imaginary 

parts of the impedance are extracted via the phase calculation. After all the calculations it outputs a graph 

of the data at the different frequencies for the user to see. 

5.2 Hardware Architecture 

The hardware of this project consists of circuitry, a microcontroller, and a computer. The circuit is 

comprised of the Variable Frequency Voltage Generation module, Current Generation and Injection mod-

ule, and the Differential Readings module produces the analog data. The microcontroller captures the ana-

log data, converts it to digital values, and transmits it to the computer. The computer processes the data and 

shows the results to the user. The microcontroller and computer also communicate user parameters to 

change system specifications. 

 

Figure 5.2.1 shows the general block diagram of the system. The circuitry is divided into four 

blocks: Variable Frequency Voltage Generation, Current Generation and Injection, Differential Readings, 

and Power Distribution and Voltage Division.  

 

 
Figure 5.2.1 Block diagram for project circuity 
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The Variable Frequency Voltage Generation module produces a sinusoidal and square wave volt-

age signal. Either the sinusoidal or square wave is selected and sent to the Current Generation and Injection 

module. The frequency is set by a resistor-capacitor network. This network has a digital potentiometer to 

allow for the network value to be changed digitally. The digital potentiometer value is set by the microcon-

troller for testing. The Current Generation and Injection module injects the current into the battery produc-

ing a response which is captured by the Differential Readings module. The Differential Reading module 

captures the response of the battery and a dummy resistor, amplifies the response with a predetermined 

gain, and then presents the response to the microcontroller for digitization.    

 

The microcontroller is the transition between the circuitry and the computer. It interfaces with the 

Differential Readings module to digitize the collected data. It also interfaces with the Variable Frequency 

Voltage Generation module to allow for the frequency of the input signal to be changed through user input 

from the computer. This frequency changing allows for the testing frequency sweep to be accomplished. 

 The computer interfaces with the microcontroller to obtain the needed data for processing. The 

data goes through multiple processing levels once transferred to allow for the required computation. Once 

the computations are completed the results are presented to the user. The computer also allows the user to 

set parameters in the circuitry. 

 

The following sections development was led by Jack Gu: 

• Variable frequency Voltage Generation 

• Current generation and injection 

• Differential reading 

 

The following sections development was led by Jack Gatfield: 

• External Power Supply 

• Power Distribution and Voltage Division 

• Computer 

• Cell Impedance 

 

The following sections development was led by Joseph Gozum: 

• Microcontroller 

 

The generic block diagram shown in Figure 5.2.1 is implemented in a through board prototype is 

shown in Figure 5.2.2 and a printed circuit board in figure 5.2.3.  
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Figure 5.2.2 Through Hole version of the circuity 

 

 
Figure 5.2.4 PCB version of the circuity printed and assembled 
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Table 5.2.1 shows how the system block diagram shown in figure 5.2.1 was implemented. This 

implementation was shown in figure 5.2.2 and figure 5.2.3.  

 

Block Diagram Module Executed System 

External Power Supply 12 V Barrel Jack 

Power Distribution and Voltage Division 5 V, 10 V, and -10 V voltage regulators 

Variable Frequency Voltage Generation Function generator, potentiometer, and capacitor switch 

Current Generation and Injection Signal selection switch and BJT 

Differential Reading Two differential amplifiers 

Microcontroller Microcontroller and support pin headers 

Users computer User’s Computer 

Table 5.2.1 Block diagram execution 

 

The External Power Supply and Power Distribution and Voltage Division module are designed to 

safely power the system. The Variable Frequency Voltage Generation, Current Generation and Injection, 

and Differential Reading modules are designed to safely produce and capture a voltage response in the 

battery. The microcontroller is designed to digitize the captured response and user-defined system param-

eters. The computer uses the digital data and calculates the impedance. 

5.3 Software Architecture  

For software, the project uses a microcontroller (Atmega1284P) programmed in embedded C, whose state 

machine is shown in Figure 5.3.2 and a computer. There is also a computer that formats and processes data 

that has its own state machine as seen in Figure 5.3.1. The microcontroller must communicate with and to 

the computer. The computer keyboard provides parameter inputs that tell what parameters to set in software 

for capturing data. The one parameter that needs setting is the digital potentiometer resistance. Once the 

value is set, the microcontroller collects voltage data. The computer then receives data from the terminal in 

hex format and then formats it to the corresponding decimal voltage equivalent. 
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Figure 5.3.1 State machine for computer processing 
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Figure 5.3.2 State machine for microcontroller processing 
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5.4 Rationale and Alternatives 

The rationale of the hardware architecture focuses on the most direct approach to acquire the data 

and calculate impedance. To consider other architectures or approaches would be unnecessary unless some 

other functionality was needed.  

 

A Finite-State Machine representation was chosen for the software architecture because the device 

is only in one specific state of operation at any given time. Changes based on external inputs are in a pre-

defined sequence, making a Finite-State Machine optimal choice. This architecture is also not computa-

tionally intensive nor deterministic, perfect for implementation on the microcontroller. This architecture is 

also heavily event-driven which is required for the system because certain components need to act based 

on certain external event/stimuli.  

 

The main rationale for the project is optimizing the system to be able to easily implement while 

still obtaining accurate data. For the hardware modules, the most straightforward and efficient circuitry was 

taken to allow for easy data acquisition and minimal error occurrences. For the software programs, a desire 

for compatibility on different operating systems ability to interact with the microcontroller was prioritized.  
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6 Data Structures  

Internal:  

• N/A  

Global:  

• Arrays  

• ADC values from across the battery and current reading resistor 

• Formatted ADC values for MATLAB to process. 

• Calculated Impedance values 

• Test Frequencies 

• User-defined structure 

• Contain input terminal value corresponding with one of 256 wiper positions on the digital 

potentiometer, testing delay, etc. 

• Floating Point Integers 

• Battery nominal voltage level 

• Differential amplifiers gain 

• Test Frequency Array 

Temporary:  

• Text files containing the terminal output after microcontroller sends data. 

• Excel files containing the formatted terminal output 

• MATLAB 

• Arrays to read in the data files for the current frequency 

• Various arrays to allow for manipulation and computation to calculate the impedance 

6.1 Internal software data structure 

• N/A   

6.2 Global data structure 

• Arrays containing ADC value across the battery and current reading resistor. 

• User-defined structure containing the input terminal value corresponding with one of 256 wiper 

positions on the digital potentiometer. 

• Batteries nominal voltage level 

• Differential amplifiers gain 

• Test Frequency Array 

6.3 Temporary data structure 

• Text files: Created from the terminal output that contains raw data sent from the microcontroller, 

afterwards converts to a voltage equivalent and stored in a CSV file.  

• Arrays: Created during the data processing as intermediate values in order to obtain the impedance 

data.  

6.4 Database descriptions 

• N/A 
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7 Low Level Design 

7.1 The Current Injection Circuit  

When designing the current injection circuit, the main goal was to design a current source that 

continuously generated a sinusoidal current without performance issues, regardless of frequencies.  

 

  
Figure 7.1.0: Module of the current injection source in the overall schematic 

 

 The current module is placed between the function generation module and the two differential 

modules, as seen in Figure 7.1.0. The input to the module is the voltage output from the function genera-

tion module. The output to the module is the voltage reading taken by the differential amplifier modules. 

 

  
Figure 7.1.1: Final schematic for the current injection circuit that injects sinusoidal current into the test 

battery for data acquisition. 

 

 The final chosen schematic for the module is shown in Figure 7.1.1. The model takes the most 

direct approach while accounting for safety and current requirements discovered in the design process. 
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7.2 Processing Narrative for Current Injection Circuit  

Safety was the main concern in the initial design, resulting on a design focused on safety and current 

stability rather than providing a strong current (i > 1 mA). This approach was taken due to the volatile 

nature and response when current is directly injected into a battery. 

 

 
Figure 7.1.3a: LTSPICE schematics for both the previous and final implementation of the current injec-

tion circuit. Note that the input is only an external sinusoid for the test schematic and in implementation 

comes from the function generator chip (Module 4) 

 

The first circuit design was the current mirror schematic (Figure 7.1.3). The basic current mirror 

and Wilder current mirror appeared as the most viable design choices. After receiving feedback to keep the 

current injection circuit design simple, the simple current mirror was chosen as the final design choice. 

 

 
Figure 7.1.3b: Comparison of output currents across respective batteries. The green current indicates the 

left model in Figure 7.1.3b while the blue current indicates the current from the right model in 7.1.3b 

 

Initial simulation and testing of the module resulted in no issues. However, issues appeared when 

multiple modules were tested together. The first issue occurred attempting to induce a response from the 

battery with the differential probes (Module 3). With the current output being in the µA range (Green graph 

in Figure 7.1.3b), no discernable differences from the nominal DC voltage could be measured. Current 

amplification was needed before the injection process. Amplification resulted in lowering the load re-

sistance as much as possible while concurrently preventing power issues and circuit meltdowns. Thorough 

testing resulted in a current that wouldn’t exceed 18 mA. An emitter resistance was added to enhance this 

current as well as dissipate power. Testing found that the best emitter resistance values for the module falls 

within the range of [15 Ω, 20 Ω], with the higher end for increased stability but lower current output and 

vice versa.  
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The second issue was the unexpected impedance when connecting the function generator chip mod-

ule (Module 4) to the current injection circuit. Connection results in an unexpected drop in the input voltage 

when connecting the voltage output to the current injection circuit. This change reduces the DC offset and 

drops the input voltage from an input of 2 + 0.9 sin (wt.) to just simply 0.9 sin (wt.). Increasing the output 

of the bias was needed to compensate for this loss. Without the bias, the BJT only produces a half-wave 

sinusoid of the respective frequency since the nature of the BJT rejects negative voltage input. After slowly 

increasing the bias of the biasing circuit to test until the input to the current injection circuit no longer looks 

like a half-wave, the best bias value found was 4 V, rather than the initial 2 V.  

7.2.1 Current Injection Circuit Interface Description  

The current injection circuit comprises of a BJT (model 2N2222) to supply a sinusoidal current 

that is injected into the test battery. The input for testing purposes comes from an external sinusoidal volt-

age source, but in implementation it comes from the biased output of the biasing circuit.  

In regard to output in relations to other modules of the system, it outputs the voltage responses 

that is read by the differential probes. These responses are measured from the test battery Vbattery and the 

current measuring resistive load. The output of the Vbattery should be the nominal DC value with a slight 

deviation over time for the voltage response. The VLoad across the battery should be similar in magnitude 

to the desired injected current of [9 mA, 15 mA], meaning the VLoad falls in the range of [9 mV, 23 mV], 

with the extra voltage due to slight extra resistance in the load resistor. 

7.2.2 Current Injection Circuit Processing Details  

The current injection circuit starts off with the BJT which serves as the core component of the 

current injection circuit. The 2N2222 BJT model was chosen for being readily available and low-cost. 

Branching off the emitter branch of the BJT is the emitter resistor, a high power (2 W) 15 Ω resistor. The 

current injection set up induces a current to flow from the collector to the emitter, meaning that a sinusoi-

dal current within [9 mA, 15 mA] flows through the test battery, current measuring resistor, and emitter 

resistor. The test battery is the standard 18650 Lithium-Ion battery and the current measuring resistor is 

another high-power resistor (2 W) with a resistance of 1 Ω. 

 

With this setup, when sending a sinusoidal input voltage (Vinput with amplitude [1 V, 3 V] and fre-

quency [1 Hz, 1 KHz]), the current injection circuit induces a current (Icollector with range [9 mA, 15 mA]) 

and frequency similar to the input frequency.  

This setup does have issues. Power dissipation and safety was the largest of the issues and also 

served as the largest constraints. The amount of measured voltage response is proportional to the magni-

tude of the injected current. However, increasing the current brings up the issues of power dissipation in 

the circuit. This constraint resulted in optimizing the circuit to have minimal overall impedance while 

concurrently maintaining a circuit that could run without issues. While current resistor values help max-

imize performance as well as maintain a safe operating system, the issue of transient response is not 

solved with these resistors. To tackle this issue, it is advised to not switch frequencies too quickly when 

performing manual measurements at specific frequencies. For frequency sweeps, a mechanism is needed 

to disconnect the battery after testing a frequency before switching frequencies in the sweep. This pre-

vents transient responses from occurring that could potentially damage the battery and the test circuit. 

However, this delay in switching frequencies causes performance issues, specifically in elongating the 

testing time for frequency sweeps.  
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7.3 The Function Generator Biasing Circuit  

The biasing circuit module is implemented to correct the function generation module’s output. The output 

of the bias is corrected because the natural bias provided the function generation module is not suitable 

for the current injection module. 

 

 
Figure 7.2.0: Module of the biasing circuit in the overall schematic 

 

 The position of the module in relation to the overall circuit is shown in Figure 7.2.0. The input of 

the biasing module is the output from the function generation module. The biasing module fixes the bias 

of the voltage output and outputs it to the current injection module. 

 

               

Figure 7.2.1: Test circuit for the biasing circuit that biases the output of the function generator chip. 

 

After extensive testing, the final design and component values can be seen in Figure 7.2.1. Higher 

capacitance results in better biasing but lowers the sinusoidal magnitude (and vice versa) while resistor 

values just changes the values of the new bias. 
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7.3.1 Processing Narrative for the Function Generator Biasing Circuit 

Initially this module was not supposed to exist in the final system implementation. However, this 

implementation was needed due to the inherent flaws of the function generator chip (XR-2206). Specifi-

cally, the chip automatically biases the voltage with an offset that’s approximately half of the power supply 

used to power the chip, there would be a minimum offset of 5 V since the chip requires a power supply of 

at least 10 V (power supply range of [10 V, 26 V]). 

 

To tackle this issue, a biasing circuit was implemented. A common emitter amplifier was proposed 

initially, but a simple biasing circuit was enough for the project’s needs. When building the biasing circuit, 

the resistor network was simple as it was just a voltage divider following the formula: 

𝑉𝑜𝑢𝑡 =
𝑉𝐶𝐶𝑅6

𝑅5 + 𝑅6

(𝐷𝐶) + sin (𝜔𝑡) 

 

The difficulty in designing this module was the choice of the capacitor. While a lower capaci-

tance preserved more of the voltage swing from the input, a lower capacitance means that the biasing it-

self is poorly filtered, resulting in a flat DC signal as the output. Having a higher capacitance alleviates 

this issue but in return causes a decrease in voltage swing, with the worst case in being half of the original 

swing (2 Vpp to 1 Vpp). After extensive testing and consideration of the test bias circuit (module three), a 

100µF polarized capacitor is chosen as it only causes a 10% swing decrease (2 Vpp to 1.8 Vpp) while pre-

serving the bias for the entire frequency range. 

7.3.2 Function Generator Biasing Circuit Interface Description  

The function generator biasing circuit takes an input voltage and re-biases it according to the pa-

rameters of the circuit components. Input for the biasing circuit is VSIN and the input range for voltage is 

approximately 6 + 1 sin (wt). To power the biasing circuit, a power supply of 10 V is provided by the 10 V 

power regulator from the power network. 

 

The output for the biasing circuit is a voltage that’s approximately 4 + 1 sin (wt) and is fed into the 

current injection module. Output in the test schematic is shown as VOUT_2 and represents the connection 

between the biasing circuit module and the current injection module. 

7.3.3 Function Generator Biasing Circuit Processing Details  

The biasing circuit starts by filtering out the DC bias provided by the input (The output of the 

function generator chip). This is done with a capacitor that goes in series with the input. Note that there is 

an inherent tradeoff with the capacitor value. This constraint forces us to choose between DC filtering 

performance and swing reduction. Higher capacitance values perform a better job at cancelling the initial 

bias of the input signal but in return shrinks the voltage swing of the output. Although in the schematic the 

capacitor value is stated to be 200 µF, the best and most appropriate value for the capacitor should be 100 

µF. This allows for appropriate filtering of the input bias at all frequencies in the sweep while concurrently 

causes minimal reduction in the output swing (~0.1V or 10% decrease in the overall swing). 
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The next part of the biasing circuit is the voltage divider component of the module responsible for 

the magnitude of the re-biased input. The offset of the output can be found from the voltage of the center 

of the divider, meaning that resistor values must be adjusted accordingly to achieve the desired bias. For 

testing purposes, a general 10 V power supply was used, but in implementation a 5 V power supply from 

the 5 V regulator chip in the power network was used. The main constraint for this part of the circuit is the 

available power supply, as the power supply determines the maximum possible bias of the output. Fortu-

nately, the output with the regulator chip’s power is sufficient for the current injection module. 

7.4 The Differential Probes  

The differential probes measure the voltage response from the current injection module. The module is 

comprised of two differential amplifiers, one for the test battery and one for the resistive load. The differ-

ential amplifier then amplifies the response by a factor of nine. 

 

 
Figure 7.3.0: Module of the differential probes in the overall schematic 

 

 The differential probes are placed to the left of the microcontroller and to the right of the current 

injection module, as seen in Figure 7.3.0. The input of the differential probes are the voltage responses 

from the test battery and resistive load from the current injection module. The differential probes then 

feed the output to the microcontroller to be further processed. 

 

 
Figure 7.3.1: Test circuit for an individual voltage differential probe   

 

 The final model for an individual probe is shown in Fig 7.3.1. Note that two separate models 

make up the module in the final design. 
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7.4.1 Processing Narrative for the Differential Probes 

A direct approach was used for the design of the differential probes, leading to a differential am-

plifier. Although the signal was a sinusoidal with an offset, an OP-AMP based differential amplifier is 

sufficient since only the magnitude of the voltages from the test battery and current measuring resistor/re-

sistive load matters. In other modules, the values of the gathered differential voltages are used for recon-

structing a sinusoidal figure for calculation. 

 

The design in straightforward, using a simple differential amplifier circuit for both voltage differ-

ential measurement probes. The resistor network used in the differential probes are not important so long 

as they are in a set ratio for the desired gain (Unity or 10). The gain for both measurement probes were 

initially all one, but during testing it was hard for the voltage across the resistive load to be measured due 

to low magnitudes [9 mV, 23 mV]. Amplifying the signal of the difference by a magnitude of 10 allowed 

for better pickup while also staying within the range of measurable voltage ranges for the data acquisition 

module (Module 6), [0 V,5 V]. Future implementations can result in higher gains for clearer data acquisi-

tion, but is presently unneeded and can cause potential safety risk or unwanted noise. 

7.4.2 Differential Probes Interface Description  

There are two differential probe circuits in the overall module, resulting in two inputs: the voltage 

differences across the current measuring resistor and the test battery. Both components measured are found 

in the current injection circuit module. Voltage difference for the battery is expected to be around the nom-

inal DC value of the battery with deviations from the forced response from the battery. Similarly, the voltage 

across the current measuring resistor to be around the range of [9 mV, 23 mV]. 

 

There are also two outputs. The first output just passes the voltage difference across the battery to 

the data acquisition module (Module six). The second output requires an amplification in order to help 

improve the data acquisition and processing. This means that the values of the resistors used in the second 

probe circuit must be modified. The test circuit resistor one and two values are reduced by 10 to a value of 

1 KΩ. The output is then multiplied with a gain of 10, improving output range for the second probes to [90 

mV, 230 mV]. Both outputs are then sent to the data acquisition module that reads these values at a more 

precise level than conventional multimeter or oscilloscope measurements. 

7.4.3 Differential Probes Processing Details  

The probes offer a flexible circuit that could be easily adjusted. There are two types of differential 

probes: probes that simply read the voltage difference (Gain of 1) and probes that amplified the voltage 

difference by a factor of 10 (Gain = 10). The first probe circuit was used to measure and extract the voltage 

difference over time for the test battery and has no amplification (Gain of 1). This extracted voltage differ-

ence is the first output to the data acquisition module with values within the range of the nominal battery 

voltage with slight deviations. Amplification is required for the second probe before outputted to the data 

acquisition module. This is done by modifying the values of the resistors of the circuit, based around the 

formula: 

𝐴 =
𝑅3

𝑅1

(𝑉+ − 𝑉−); 𝑅3 = 𝑅4; 𝑅1 = 𝑅2 
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This amplification of the voltage difference results in the range [90 mV, 230 mV]. This then feeds 

into the second output which is also part of the data acquisition modules.  The simplicity of the differen-

tial probes results in few constraints. Resistor precision is an incredibly important factor, especially since 

precision and accuracy is important in data calculations. High-quality, incredible precise (±1%) resistors 

are used to alleviate this error. Power dissipation isn’t an issue for the module, as the current that reaches 

the voltages are inherently low from the nature of the OP-AMP. 

7.5 The Function Generator Chip Circuit  

The function generator module comprises of a function generation chip (XR-2206) and the com-

ponents are chosen according to the spreadsheet provided for the chip. The chip is tuned to the following 

parameters: 

• Frequency Range [1 Hz, 1KHz] 

• Voltage swing of 1 volt: Vpp = 2V 

• Sinusoidal shape 

 

 
Figure 7.4.0: Module of the Function generator chip circuit in the overall schematic 

 

 As seen in Figure 7.4.0, the function generator chip module is placed in between the power in-

verter and the biasing circuit module. The function generator chip module takes voltage from the power 

network as input (+10 V and +5 V). 

 

 
Figure 7.4.1: Internal circuit for the function generator chip circuit   
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 Figure 7.4.1 shows the components modified around the chip. The capacitor in blue and the resis-

tor network in maroon determines the frequency of the output voltage while the resistor network in green 

determines the amplitude of the output.  

7.5.1 Processing Narrative for the Function Generator Chip Circuit  

There are several approaches to designing the function generation module. This module needs to 

easily switch frequencies while also maintaining the amplitude of the voltage needed for the current injec-

tion module. Before using the function generator chip, several timers were considered.  

 

 
Figure 7.4.1: Schematic for the 555 Timer circuit 

 

The first approach was to use a 555 timer (shown in Figure 7.4.1), but this resulted in noticeable 

errors in the timer, such as signal slewing as well as the frequency being off.  Signal slewing is unaccepta-

ble in the final output due to the difficult nature in measuring the output frequency. 

 

 
Figure 7.4.2: Output of the 555 Timer. 

 

Figure 7.4.2 demonstrates the signal slewing of the 555 timer. What did not help the timer’s cause 

was the need for more than two capacitances, suggesting the use of a variable capacitance. This adds 

complications to the timer, leaving more room for error. Browsing around for alternatives lead to the 

function generator chip used in the final implementation. 
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7.5.2 Function Generator Chip Circuit Interface Description  

The function generator chip circuit module takes in two inputs: a signal indicating which capacitor 

branch (Figure 7.4.1 Blue box) the module should be connected to and an I2C signal that adjusts the Digi-

pot (Figure 7.4.1 maroon box) for specific frequencies. Input signals are matched and coordinated to gen-

erate a desired frequency. Refer to the lookup table included for what digital inputs to send for a certain 

frequency. 

 

The module is powered by a 12 V power supply from the power network, indicated as VCC in the 

schematic Figure 7.4.0. The output of the function generator chip circuit is pin 2 in Figure 7.4.0 and is a 

sinusoid due to wiring configurations of pin 13 and pin 14 in Figure 7.4.1. The sinusoid is a signal with DC 

offset of 6 V, due to the inherent nature of the function generator chip. The AC component has been adjusted 

to have a swing of 2 Vpp. The output is then sent to the function biasing circuit module (Module two). This 

output in total is: 6 + sin (𝜔𝑡) and is sent to the current injection circuit module. 

7.5.3 Function Generator Chip Processing Details  

The main constraints lie within the chip parameters itself. The nature of the XR2206 function 

generator chip does not allow for resistances larger than 1 MΩ to be used while the capacitance can only 

accept capacitance inputs of the range [0.1µF, 100 µF]. Implementation of the capacitance branch is 

needed to simplify the digital resistor network. This causes delays in overall processing time, due to the 

need for capacitors to discharge before switching branches for safety. 

 

 
Figure 7.4.3: Output of the function generator chip after biasing (High frequency range) 

 

There is also the performance issue regarding the internal biasing, since it inherently biases the 

output to way above desired voltage range. The function biasing circuit (Module two) is added to resolve 

this issue. The frequency range is unchanged and is sinusoidal throughout the entire range, as shown in 

both screenshots of Figure 7.4.3. 
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7.6 Digital Potentiometer and I2C 

Figure 7.5.0 is the input and output specifications of the digital potentiometer used in this project.  

 

 
Figure 7.5.0: Input terminals of AD5422 programmed via I2C 

7.6.1 Processing Narrative for I2C Communication 

During the design phase of the project, after it was found that the XR2206 function generator IC 

could be used to generate variable frequency waveforms, there needed to be a way to control the frequency. 

In the datasheet of the XR2206, it shows a 1 MΩ analog linear potentiometer varying the frequency but in 

order to automate the project, a digital potentiometer (AD5422) is a better replacement. The digital poten-

tiometer allows for a quicker and more precise change of resistance than an analog equivalent.  

 

The digital potentiometer chosen has its resistance set by sending a specific 8-bit value over I2C. 

In order to properly control the digital potentiometer, I2C communication was implemented on the micro-

controller. 
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7.6.2 I2C Interface Communication Description 

Figure 7.5.1 is the physical implementation of the test bench for I2C communication.  

 

 

 
Figure 7.5.1: Physical implementation of the I2C communication circuitry 

 

The digital potentiometer has 13 inputs but only 8 are used in the implementation and two outputs 

which are the opposite ends of the potentiometer.  

 

Of the 13 inputs, two are AD0 and AD1, these inputs set the last bits of the address of the digital 

potentiometer to be used during I2C transmission. Both are must be physically set by attaching to an ap-

propriate voltage or grounding them. In the implementation in this project, both inputs are grounded to 

represent zeros. Therefore, according to the datasheet the address of the Digital potentiometer is 0101100, 

the first 5 bits are set in manufacturing.  

 

Another 2 inputs are SDA and SCL, these are the data and clock signals respectively. VDD and 

VSS are power inputs and these inputs are both set to VDD (5 V). 

  

The final input utilized in the Battery Management System device is W1, also known as the wiper 

of the digital potentiometer. The position is set by a digital signal, containing the position for a specific 

resistance that is sent through I2C.  

  



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

65 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

7.6.3 I2C Processing Details 

Figure 7.5.3 shows an example of an I2C signal being sent on the SDA line and the clock signal on the 

SCL line.  

 

 
Figure 7.5.3: Output of I2C processing 

 

During testing of I2C communication to the digital potentiometer, the specifications for the I2C 

standard were difficult to implement. There are many acknowledge signals that need to be generated and 

acknowledged on both sides, eventually a library was used to implement I2C. The figure above shows the 

signals generated over the SDA (blue waveform) and SCL (yellow waveform).  

 

The waveforms look correct as the test data to be sent was 0xF8 (i.e., 1111 1000) and that was 

sent repeatedly, the acknowledge signal is seen before the data that takes up about two clock cycles. Then 

the data that follows is correct.  

 

I2C is implemented as specified and works as desires. During actual implementation of I2C on 

the breadboard and PCB, it is important to keep the distance short as I2C is highly affected by capacitance 

of wire interconnects. If I2C is used more, then it is important to include more pullup resistors (of at least 

4.7 kΩ) along the signal lines.  
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7.7 USART  

7.7.1 Processing Narrative for USART Communication 

During initial discussion on the physical implementation, the need to send data from microcontrol-

ler to an external computer came up. It was understood that the calculations needed to find impedance is 

too intense to run on a microcontroller. It was decided that processing needs to occur on a computer. RS232 

is well-known as the standard for communicating with a PC from a microcontroller. To properly implement 

the communication standard by hand takes a lot of time and debugging. To save time, a USB cable that 

includes ICs that implement the RS232 standard were purchased. The cable takes in a USART signal then 

converts it into an appropriate RS232 signal that can be understood by the computer.  

 

Implementing USART communication is well-documented in the Atmega1284P datasheet and 

even included examples written in the C programming language. Writing code for this module implemen-

tation was straightforward.  

7.7.2 USART Interface Communication Description 

Figure 7.6.1 shows the wiring configuration of the USB cable that transmit data from the micro-

controller to a computer.  

 

 
Figure 7.6.1: USART Pin output used in the project 

 

The header terminated end of the USB cable has 6 inputs but 3 can be grounded in this implemen-

tation. Ground, CTS, and RTS are connected to ground. CTS and RTS are used for data flow control pur-

poses but are unnecessary in this project. The most important inputs are TXD and RXD, while in the fig-

ure above it says they operate at 3 V levels, it can actually handle the 5 V signals outputted by the micro-

controller. The TXD (transmit pin) input it connected to the RXD output on the microcontroller and the 

RXD input connected to the TXD output on the microcontroller. This allows the USB cable to receive the 

transmitted data from TXD on the microcontroller and transmit to the RXD (receive pin) on the micro-

controller.  
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USART implementation details:  

• 9600bps (Baud rate)  

• 8 data bits 

• 1 stop bit 

• No parity checking 

• No flow controls  

 

The main reason for the 9600 bps is that it provides the least amount of error during transmission 

compared to higher baud rates, the higher rates are difficult for small microcontrollers to reliably send 

data. In this device, the quality of the data is the most important aspect. The baud rate during testing only 

leads to several second transmission times of hundreds of bytes. 8 data bits was the easiest to send and 

receive without having to add extra software control. Parity checking was not implemented due to time 

constraints and only being useful across noisy mediums. Flow control was also left out because it is just 

not needed for this device. 

7.7.3 USART Processing Details 

Figure 7.6.2 shows an example of the output from the microcontroller being read on a computer via a ter-

minal emulator.  

 

 
Figure 7.6.2: USART Interface using RealTerm for debugging 

 

The implementation works just as desired. Data is able to be acquired on microcontroller and be 

successfully transmitted to the computer. The only limitation of this module is that only 8 bits can be sent 

at any given time by USART from the microcontroller, causing a time delay, but the overall transmission 

time occurs only over several seconds.  
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7.8 Data Acquisition  

7.8.1 Processing Narrative for Data Acquisition 

During the initial planning of the device, it was apparent the ADC would be an important compo-

nent of the design. The ADC quantities the output of the differential probes which is the data needed for 

impedance calculations. The internal 10-bit SAR-based ADC in the Atmega1284P will be used, it can read 

changes in the desired range (i.e., the mV range). A higher bit ADC provides higher precision of data 

calculated but for the current iteration the internal ADC works well.  

7.8.2 Data Acquisition Interface Description 

The implementation of the ADC is simple and only involves setting the bits of four different 8-bit 

registers that are memory-mapped on the Atmega1284P microcontroller. After setting the registers, the 

ADC is set to Free-running mode. In this mode, the ADC is continuously quantizing values from the se-

lected input channel. The selected channel is based on certain bits set in one of the four setup registers.  One 

channel is used for the differential reading of the battery and is set to 1x gain. Another channel is used for 

the differential reading around the current reading resistor at 10x gain.  

7.8.3 Data Acquisition Details 

In Figure 7.7.3a the equivalent voltage values of the 10-bit ADC values after being sent and pro-

cessed on a computer are shown.  

 

Voltage Reading 

3.78299120234604 

3.67546432062561 

3.63147605083089 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

3.6119257086999 

Figure 7.7.3a Output reading of the ADC 

 

The Atmega1284P microcontroller comes packaged with a 10-bit SAR-based ADC that allows the quanti-

zation of the differential probes.   
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7.9 MATLAB  

The circuitry gathers data for the user computer to process through MATLAB. The complex im-

pedance and the magnitude of the impedance are calculated for one frequency and for the full frequency 

sweep. This project was focused on finding the impedance of the battery, but the data can be further extrap-

olated to give more answers.  

7.9.1 Processing Narrative for Data Processing 

Data processing is a crucial component of the system. The circuitry was developed to provide the 

necessary data to allow for the impedance to be calculated. Due to the development team’s prior knowledge, 

it was decided to use Python, Excel, and MATLAB to perform the necessary data formatting. Python and 

Excel format the data from the raw USART files. Python takes the USART files, converts the data from 

raw hex strings to individual integer values and stores the values into an Excel file. The Excel file removes 

remnant elements from the Python processing and saves the data for MATLAB to access. MATLAB reads 

in the file and build data arrays for them impedance calculations. 

7.9.2 Data Processing Interface Description 

The implementation of the MATLAB code has many supporting steps. These steps are needed to 

allow for the data to be transferred, using USART, and formatted, using Python, to allow for processing 

once these steps have been completed, Excel files of readable data are saved in the proper directory for the 

MATLAB function to manipulate it.  

 

Originally the code was to be executed through a script but this was improved to be a function call.  

 
Figure 7.8.2a Frequency Call Header for frequency sweep data processing code 

 

The function call gives the project further versatility in developing a GUI in the future but it also im-

proves program speed. MATLAB functions handle intermediate variables differently than scripts, so the 

program became less intensive. In future work, optimization of the code is needed in order to further re-

duce execution time. 

7.9.3 Data Processing Details 

 

 
Figure 7.8.3a High level block diagram of data processing 
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The MATLAB program pulls in the file values and builds arrays to allow for the needed calcula-

tions. First, the program averages the multiple trials per frequency to reduce noise and outliers. Then the 

nominal voltage of the battery is removed from the average battery voltage to get the voltage drop. The 

current resistor value is manipulated to get the current through the battery branch. With the voltage and 

current values, the magnitude of the impedance can be calculated. 

  

The complex impedance is also wanted so the phase shift of the data is needed. A default sine wave 

at the proper frequency and a sinusoidal approximation of the voltage data are created to calculate the phase 

shift. With this phase shift the complex impedance can be calculated and stored. The values of the magni-

tude and complex impedance at each frequency are computed and then output to the user. 

 

This process can be executed at a single frequency (this was used for testing and development) and 

have those results outputted but the frequency sweep allows for trends to be seen giving more information 

about the batteries health.  

7.9.4 Data Processing Important Code Snippets 

Below are a few important snippets of code and a description of its functionality. 

 

 

The above code is used to create a dynamic file name. This is needed because the code has to loop 

through the frequencies and process the proper data. To obtain the data it has to be able to access the 

corresponding file. Dynamic name generation does require the saved files to follow a naming convention 

but it allows the processing code to operate more efficiently. 

Figure 7.8.4a Code snippet of the file name creation system for the frequency sweep 

 

 

The above code is a portion of the code used to calculate the phase shift between the injected current and 

the current experienced by the battery.  

Figure 7.8.4b Code snippet of the phase calculation 

 

 

This takes the final computations and does a final averaging of the data points data and then saves them 

to another array in order to output the information at the end of the frequency sweep. 

Figure 7.8.4c Code snippet of the final data saving to be used in the final output 
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7.10 The Insufficient Current Problem 

During the initial testing, the microcontroller was unable to extract data from the voltage reading 

across the battery. The differential reading component was only reading the nominal DC value of the battery 

rather than the induced change caused by the current. Upon looking further into the problem, the issue 

behind this was that the current injected was insufficient in inducing a response within the battery.  

7.10.1 Solving the Insufficient Current Problem 

To solve the problem, the current injection component of the circuit was modified to increase the 

current injected (200 µA increased to 15 mA). This was done by adding a resistor to the emitter as well as 

reducing the load in the test circuit from 2,200 KΩ to 1 Ω. Through extensive testing, the best resistance to 

be added to the emitter was found to be RE ∈ [15 Ω, 20 Ω]. Any lower resistance added to the emitter causes 

a safety hazard, with the increased injected current being too high, causing the circuit to breakdown and 

melt. Any higher resistance added to the emitter leads to insufficient change in the circuit.  

7.11 How/Where do we Process the Data that we Collect Problem 

During initial planning of the project, it was discovered the data collected from the ADC isn’t 

practical for calculations, conversions, and processing on the microcontroller itself. The microcontroller is 

limited in memory, ability to handle floating point numbers, and just overall computational power required 

to find the impedance of the battery. 

7.11.1 Use Python/MATLAB to do Conversions and Processes the Data 

To compensate for the limited computational power of the microprocessor it was decided to us a separate 

personal computer. The data is transmitted to the user computer and the computer handles the processing 

to extract the impedance from the data. It was found that the communication between the microcontroller 

and the computer produces file unreadable by MATLAB. This unreadability was solved through using a 

Python script. Python takes the raw data and convert it from the 10-bit value acquired by the ADC to the 

floating-point voltage equivalent, then it placed into a CSV file that is used by MATLAB. From here, 

MATLAB takes the data and processes it to find the Magnitude and Phase of impedance, break it up into 

its real and complex components, and then display this in graphs to the user. 

7.12 The Injected Current Cutoff Problem  

When measuring the output of the function generator circuit after biasing, it was found that the 

biased voltage and swing was sufficient and close to ideal specification for the current injection circuit. 

However, when testing components together, the effect the current injection circuit had in power dissipation 

was not accounted for. This initially resulted in the biased signal to be insufficient, and it resulted in the 

input voltage and therefore the injected current to be cutoff. This cutoff was due to it crossing the opera-

tional threshold of the transistor causing it to shut down. 
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7.12.1 Solving the Injected Current Cutoff Problem 

To fix this issue, the biasing of the function generator chip was increased.  Additionally, sources of 

extra resistance were found and minimized without affecting the systems performance. While the exact 

reason for this unexpected drop in the input voltage for the current injection circuit is unknown, the biasing 

circuit was adjusted to account for this unexpected modification to the input.  

 

This readjustment accomplishes the task of preventing cutoff that would skew the data while con-

currently keeping the voltage range low enough to where the current injection circuit could operate.  

7.13 The Power Dissipation and Battery Safety Issue 

With the problem described in 7.9 the issue of power dissipation arose. With a higher current flow-

ing through the circuit a higher power was being experience by all the circuit parts. This higher power was 

causing parts, especially the BJT and the emitter resistor, to heat up after short testing periods.  This heat 

would cause the BJT to become compromised, creating a major safety hazard. It could cause a huge current 

(greater than 10 A) to flow through the circuit and potentially compromise the rest of the circuit and most 

dangerously the battery.  Power dissipation created the need to balance power ratings with the resistor 

values. This balancing was needed in order to maximize current magnitude but maintain safety.  

 

With the problem described in 7.13 changing the frequency of the signals caused unsafe transient 

responses. Having large frequency steps during the sweep created large transient current responses that 

could compromise the safe handling of the battery and circuit parts. Lowering the injected current was 

shown to be a feasible solution to the unwanted transient responses but this led to not inducing a detectable 

voltage response from the battery. 

7.13.1 Solving the Power Dissipation and Battery Safety Issue  

The power dissipation resistors used in the current injection modules had power ratings of two 

Watts. Resistance values for the emitter and resistive load were chosen based on power ratings and current 

maximization. High injection current plays a critical role in generating raw sufficient data. 

 

Transient response when switching frequencies is another safety issue. Preserving the manual input 

and frequency sweep feature, delays were introduced to allow the system to settle before switching fre-

quencies. This delay varies depends on the type of input, with frequency sweep containing low delay times 

while manual inputs called for much higher delay times. Frequent delays go against lowering overall testing 

time, but is a necessary tradeoff to ensure system reliability. 

7.14 The Frequency Range Generation Problem  

When originally designing the function generation frequency RC network it was discovered that 

the full frequency range was not easily obtainable with a single capacitor. The values needed for the ca-

pacitor and the potentiometer were not available in commercial products. The plan was to have one non 

polarized capacitor value of 0.1uF and to use a digital potentiometer to change the RC network value. It 

was determined that with the original capacitor value a potentiometer range of 0.1 Ω to 10 MΩ. This 

range is not feasible in hardware. 
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7.14.1 Solving the Frequency Range Generation Problem  

Two capacitor branches with a digital switch to select the branch was implemented. The switch 

allows for the capacitor value to be changed, allowing the function generator chip to output the entire fre-

quency range.  

 

Frequency Resistance (Ω) Capacitance(F) 

1 Hz 10K 100µF 

7 Hz 1.25K 100µF 

... ... ... 

1 KHz 10K 0.1µF 

Table. 7.18.1: Table of lookup values for specific frequencies. Refer to the full table included for other 

frequencies 

 

Through experimentation and calculations, it was determined to use a 100 uF capacitor for lower 

frequencies and a 0.1 uF capacitor for higher frequencies. These capacitor values allow the resistor of the 

RC network to stay at values available to the potentiometer. The relationship between frequency, resistance, 

and capacitance can be seen in table 7.18.1. This solution added onto the complexity of the function gener-

ation module, but it is needed to reasonably implement the frequency sweep. 
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8 User Interface Design 

Microcontroller: 

Data Acquisition at a Single Frequency 

The main user interface for the microcontroller is through a terminal window. Communicating via 

USART, the microcontroller sends strings telling what state of operation the microcontroller is in (e.g., 

Initialization, Wait, Setting Digital Potentiometer, Acquisition, etc) after each statement of the state of 

operation. During the choose frequency state, the microcontroller requests a HEX value that has been 

mapped to a specific frequency.  

 

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz 

The user interface will be a terminal window. The terminal will print out the name of the state of 

operation the microcontroller is currently in and then a newline. The terminal will also print out the spe-

cific frequency that is currently being used for data acquisition and then the data that was sent over on the 

next newline. 

 

Computer: 

Python: A standard command shell/terminal interface. 

 

MATLAB: MATLAB command window. 

8.1 Application Control 

Microcontroller: 

Data Acquisition at a Single Frequency 

Typical behavior is a static terminal window (RealTerm terminal emulation software was used 

here), where sentences appear on separate new lines that state what mode of operation the microcontroller 

is in. In the choose frequency state, the microcontroller will halt operation (and no newlines will occur) 

until user input is given. During the sending data state, the microcontroller sends all acquired data from 

the ADC to the terminal, this is required in order to capture the data and use it later for processing. The 

most important aspect is that all the data from a single frequency acquisition period must all appear on 

one line of its own. This is the basic configuration and design of the user interface with the microcontrol-

ler and can be extended as desired. 

 

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz 

 The typical design of the application control will be a terminal window. The user only needs to 

press a specified button and the microcontroller will start acquiring data from every frequency in the pre-

determined range. Once the frequency is set, at each frequency a hardcoded amount of time for data ac-

quisition and appropriate resistor values will be set automatically. The most important aspect is that all 

the data from a single frequency acquisition period must all appear on one line of its own.  
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Computer:  

Python: Command shell/terminal in order to run the formatting script.  

 

MATLAB: MATLAB command shell to run the corresponding formatting script. 

8.2 User Interface Screens 

Microcontroller:  

 
Figure 8.2a Microcontroller state diagram 

 

Data Acquisition at a Single Frequency 

The microcontroller will have a singular, long-running screen. At each instance of a new state, the 

microcontroller sends the name to the terminal window. The microcontroller can take input at specified 

points. After all, states have executed, the system will repeat at the Wait State to start a new set of acqui-

sition, this configuration can be seen in Figure 8.2b.  

 

 



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

76 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

 
Figure 8.2b Generic design of a microcontroller user interface 

 

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz 

 The same format as above (Data Acquisition at a Single Frequency) will be followed but repeated 

for each frequency within the sweep range.  

 

Computer: 

Data Acquisition 

To start the circuit in collecting the proper data a simple run button would be had with a brief summary of 

the process that will occur when the program is running. 

 

 
Figure 8.2c Example of a program begin and running menu of a LabVIEW window 

 

 

  



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

77 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

Data processing 

Once the data acquisition stage of the system is complete. The computer will transition to data 

processing functionality. The progress bar will still be progressing as it processes the data. Once the pro-

gram finishes a new window will appear showing the results and a brief summary of their meaning. 

 

 
Figure 8.2d Example of a program output GUI in a LabVIEW window 

 

LabVIEW has the capability to run all the needed programs. Using LabVIEW one GUI could be 

developed to completely execute the data acquisition and data processing systems. However, LabVIEW 

requires a paid license and then it takes time to develop the GUI based in LabVIEW. 
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9 Test Plan 

9.1 Test Design 

9.1.1 Testing for Floating Node Voltages 

1. Objective: Test for floating node voltages at the transistor’s collector component.  

2. Function tested: The current generation module.  

3. Design objective involved: Injecting a sinusoidal current into a test battery. 

4. Experiment Setup: The setup simply involves placing a test battery in series with a resistor and 

the transistor. A high valued resistor is recommended to fully dissipate power generated from the 

current running through the test battery. 

 

 
Figure 9.1.1: Setup for floating node voltage testing 

 

Important note for the setup is to follow the setup in Figure 9.1.1 exactly. This is because 

if placed in the wrong terminal or order, the current won’t be dissipated properly, leading to a po-

tential circuit meltdown. 

 

5. Procedure(s):  

A. Setup the experimental setup shown in Figure 9.1.1.   

B. Connect a function generator as the input (Figure 9.1.1 light blue wire)  

C. Connect the test battery in series with the circuit (Figure 9.1.1 bottom orange wire)  

D. In increments of 0.1 volts, input various DC voltages from zero to three volts. 

E. For each increment, record the voltage at the collector (Figure 9.1.1 bottom orange 

wire) 

 

6. Expected Results: Running a quick initial test of the output indicates the possibility of a floating 

node voltage. 
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9.1.2 Testing the Injected Current Circuit’s Output 

1. Objective: Test whether the output of the injected current through the battery is able to maintain 

a sinusoidal waveform through the test battery.  

2. Function tested: Current injection module. 

3. Design objective involved: Injecting a sinusoidal current into the test battery. 

4. Experiment Setup: Similar to experiment 9.1.1, the setup of the test circuit is extremely im-

portant. The model of the transistor is the 2N222 BJT. 

 

 
Figure 9.1.2: Setup for testing output current waveform 

 

Resistor values are arbitrary, depending on the personal preference of a higher or lower current 

output. The only important component of the resistor is the location, as shown in Figure 9.1.2. 

5. Procedure(s): 

A. Setup the experimental setup in Figure 9.1.2.  

B. Connect a function generator as the input (Figure 9.1.2 light blue wire) 

C. Connect a test resistor (arbitrary value) in series with the circuit  

D. Connect a voltage supply to the end of the test resistor. 

E. With the function generator, input a sinusoidal voltage with an offset of two volts and a 

swing of two volts (frequency is arbitrary).  

F. Record the waveform shape across the test resistor using an oscilloscope.  

G. Disconnect all voltage supplies. 

H. Replace the DC voltage supply with a ground terminal. 

I. Replace the test resistor with a test battery. 

J. Place the sinusoidal input into the test circuit and record the waveform across the test bat-

tery. 

6. Expected Results: When looking at simulations, there was no issue with maintaining a sinusoidal 

current through the battery, so similar results should be expected. 
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9.1.3 Testing the Output of the Function Generator Circuit 

1. Objective: Test whether the function generator is able to generate the entire frequency range. 

2. Function tested: Generate input voltage of varying frequencies. 

3. Design objective involved: Injecting a sinusoidal current of varying frequencies into the test bat-

tery. 

4. Experiment Setup: Test setup for this experiment is primarily based on the XR-2206 datasheet. 

Refer to the datasheet for which resistor and capacitor values to use based on the desired fre-

quency. 

 

 
Figure 9.1.3: Test setup for the function generation circuit 

 

The chosen amplitude of the output waveform is one volt. Looking at Figure 9.1.3, the potentiom-

eter is shown in the setup is an analog potentiometer with a range of [10 Ω, 1 MΩ]. 

 

5. Procedure(s): 

A. Setup the experimental circuit shown in Figure 9.1.3.  

B. Provide the appropriate power supplies (+12 V for the function generation chip, + 5 V for 

the biasing module)  

C. Connect an oscilloscope to the output of the biasing module.  

D. Slowly rotate the analog potentiometer, and note the shape of the waveform as well as the 

frequency value.  

E. Test for all frequencies within the objective range. 

 

6. Expected Results: The entire frequency range could be generated without issues since it is well 

within the limits of the function generator chip. 
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9.1.4 Testing the Accuracy of the Differential Probes 

1. Objective: Test the accuracy of the differential probes and see if it is good enough for the project 

requirements.  

2. Function tested: Raw data extraction of the induced voltage response across the battery. 

3. Design objective involved: Extract the induced voltage response from the current being actively 

injected into the battery. 

4. Experiment Setup: The test setup for this the LF353N op-amp in differential amplifier configu-

ration. All the resistors are the same resistor value (suggested: 10 kΩ) to provide a 1X gain.  

 

 
Figure 9.1.4: Test setup for the differential probes 

 

5. Procedure(s): 

A. Setup the differential probe circuit shown in figure 9.1.4  

B. Feed two DC voltages with a small difference (~0.01 V) between the two of them.  

C. Record the output voltage of the differential amplifier.  

D. Repeat for different voltage values as much as needed.  

 

6. Expected Results: The probes are expected to work and give the voltage difference between V+ 

and V- as previous LTspice simulations have shown.  
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9.1.5 Testing the Data Extraction Feature 

1. Objective: Test the ability of the data extraction feature (the ADC) and the ability to transfer the 

data between the collection (microcontroller) and processing unit (computer). 

2. Function tested: Data collection module. 

3. Design objective involved: Collect the raw data and format the data to be used for processing. 

4. Experiment Setup: The setup up is the Atmega1284P in the basic configuration to turn on. The 

serial communication lines are then connected to be used for USART to a computer and the ADC 

is also connected with the output from the differential amplifier. 

 

 
Figure 9.1.5: Test set up for data transmission between microcontroller and computer 

 

5. Procedure(s): 

A. Set the frequency of input voltage  

B. Inject battery with the produced current  

C. Read induced voltage across the battery and current reading resistor via ADC  

D. Send results from ADC to the terminal via USART serial communication  

E. Format the data received into equivalent voltage values 

F. Manually verify that results are in the correct range 

 

6. Expected Results: Converted voltage value equivalents that vary around the nominal battery 

voltage.  
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9.1.6 Testing the Output of the Biasing Circuit 

1. Objective: Test the output of the biasing circuit by changing the bias of the function generator 

circuit’s output 

2. Function tested: Biasing of the input voltage. 

3. Design objective involved: Generating a sufficient input voltage for current injection. 

4. Experiment Setup: The setup for this test consists of three resistors and a capacitor to produce a 

DC offset that could be added to an input sinusoid.  

 

 
Figure 9.1.6: Testing circuit for the biasing circuit 

 

5. Procedure(s): 

A. Setup the biasing circuit shown in figure 9.1.6.  

B. Place two oscilloscope probes: One at the output of the function generator output and one 

at the biasing output. 

C. Start at the lowest frequency (1 Hz) and input the necessary power supplies.  

D. Record the output of the biasing circuit.  

E. Adjust the voltage divider as necessary after disconnecting the output of the function gen-

erator output after each acquisition.  

F. Repeat steps C through E until desired bias is reached.   

G. Adjust frequency to the highest in the range (1 kHz) and repeat steps C through F. 

 

6. Expected Results: The input sinusoid is DC offset in the positive direction.  
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9.2 Bug Tracking 

A database, shown in table 9.2, is used to track defects found while performing the test cases. All 

defects are logged as they are discovered. Defects are then assigned to individual members to investigate. 

 

Test Defects 

9.1.1 N/A 

9.1.2 Circuit heats up if left on too long, suggesting power issue 

9.1.3 Function generator heats up if frequency switches too fast  

9.1.4 N/A 

9.1.5 Was not getting the full 10-bit ADC value and the ADC was not in free running mode  

9.1.6 Slewing of slopes of output as well as inconsistency in startup 

Table 9.2 Database for bug tracking 
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9.3 Quality Control  

The test described in section 9.1 either pass or fail the designed specifications. The results of 

these tests are listed in table 9.3. This table had the date of the test and any seen deviations from the ex-

pected results.  

 

Test  
(Iteration) 

Pass/Fail  

(Fix Time) 

Deviations 

9.1.1 

(1) 

Fail  

(Tues. 

10/16/18) 

Node voltage is inconsistent and isn’t following any static value or pattern 

9.1.1 

(2) 

Pass  

(Thurs. 

10/18/18) 

N/A 

9.1.1 

(3) 

Pass  

(Fri. 10/19/18) 

N/A 

9.1.2 

(1) 

Pass  

(Fri. 11/23/18) 

N/A 

9.1.3 

(1) 

Fail (2/2/19) Slewing of the slopes of sinusoids, especially at lower frequencies (~100 

Hz) 

9.1.3 

(2) 

Pass (2/2/19) Slight slew at really low frequency (~ 1 Hz), but still sinusoidal enough for 

data collection. 

9.1.4 

(1) 

Pass (2/10/19) A slight deviation in gain (~0.95) 

9.1.5 

(1) 

Pass (1/30/19) Data was gathered but Arduino is not the final implementation 

9.1.5 

(2) 

Pass (2/10/19) Using the Atmega, data was not massively sinusoidal but it was being cap-

tured and processed 

9.1.5 

(3) 

Pass (2/10/19) N/A 

9.1.6 

(1) 

Fail 

 (Tues. 

1/29/19) 

Output swing shrinks with frequency, also inconsistent. 

9.1.6 

(2) 

Pass  

(Thurs. 

1/31/19) 

Still slight swing decrease with frequency, but at max 0.1 V so deemed ac-

ceptable 

Table 9.3 Table for test results 
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9.4 Identification of critical components 

When testing the system, there are several components that need to be focused on to ensure that the 

battery testing process is accurate and safe for use: 

 

• Sufficient current (>1 mA) is flowing through the test battery in the current injection circuit mod-

ule. For reference, the current values when properly injected should fall in the range of [9 mA, 15 

mA]. Conversely, the current should not exceed 20 mA or else safety issues with the overall cur-

rent injection circuit arises. 

 

• Accuracy in the gain of the differential probes. The discrepancy between the claimed accuracy 

and actual accuracy will skew data due to the change in the differential op-amps gain. 

 

• The proper supply voltage is given to each module of the project. This is especially important for 

the biasing circuit as the supply voltage plays a large role in determining the bias of the circuit. 

Improper voltage levels will not allow sections of the system to operate properly.  

 

• The input voltage to the current injection circuit should be sinusoidal and never cross the zero 

thresholds. If this is not maintained the current will become non-sinusoidal. 

9.5 Items Not Tested by the Experiments 

• Overall test times for a frequency sweep. Due to issues incorporating the digital potentiometers 

during testing, testing with the digital potentiometer is impossible at the moment. Recording test-

ing times with an analog potentiometer is inaccurate compared to an automated test. 

 

• The needed discharge times. Due to risks with testing, minimal testing time to switch frequencies 

is not advised for safety reason. Generous time is given between testing periods, preventing safety 

issues but increasing the testing time. 

 

• Accuracy, setting time, and effectiveness of the digital potentiometer. 
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10 Test Report 

10.1 Floating Node Voltage  

Iteration one results: The results of the experiments suggests the probability of a floating node voltage. A 

floating node voltage is a persistent voltage at a specified node that could potentially interfere with meas-

urements and overall results. 

 

 
Figure 10.1.1: Table of the node voltage at the collector (Vc) vs. the input voltage (VB) 

 

Figure 10.1.1 shown above shows the change in the node voltage value with different input voltage 

values. Inability to explain the cause of these results or patterns in the voltage values highly encourages a 

second iteration for verification. 

 

Iteration two results: The results for the second attempt of the experiment yielded different results. The 

results seem to suggest that there is no floating node voltages at the collector, suggesting that the results of 

the first experiment are due to faulty equipment and human error. 

 
Figure 10.1.2: Input voltage vs. Collector voltage (Blue) and current (Red) 

 

Figure 10.1.2 show both the current and voltage values at the collector. The current is inherently 

negative due to the properties of current mirrors. Collector voltages change proportionally with collector 

current, suggesting that there are no floating node voltages. To verify the validity of these results, a third 

test will be performed. 

 

Iteration three results: The results are identical to the second iteration, suggesting the first iteration to be 

wrong and should be ignored.  
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10.2 Testing the Injected Current Circuit’s Output 

Iteration one results: When looking at the expected results, the current through the battery should retain 

the sinusoidal shape although some slight distortion might occur. 

 

 
Figure 10.2.1:  Oscilloscope output for the current (Top) and input voltage (Bottom). 

 

The results shown in the oscilloscope in Figure 10.2.1 verify the expected results. The current through the 

battery maintains the sinusoidal waveform with slight distortion. A second iteration is needed for verifica-

tion. 

 

Iteration two results: The results are identical to the first iteration, confirming the idea that current injec-

tion through a battery maintains a sinusoidal shape. 
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10.3 Testing the Output of the Function Generator Circuit 

Iteration one results: Assuming correct setup of the function generator chip, the square and sinusoidal 

waveforms should be properly generated. There should be no distortion as the frequency range used in the 

final implementation (f ∈ [10 Hz, 1 KHz]) is well within the limits of the function generator chip. 

 

 
Figure 10.3.1: Oscilloscope outputs for the sinusoidal and waveform nodes of the function generator chip 

 

Both outputs in Figure 10.3.1 are shown to be clean and lacking in noise. The amplitude and fre-

quency values are also similar to the values depicted in the manual. A second iteration will be performed 

after adjusting the parts just for verification. 

 

Iteration two results: The results are identical to the first iteration. No issues were expected for both iter-

ations as circuit assembly followed the function generator chip’s manual to an exact degree.  
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10.4 Testing the Accuracy of the Differential Probes 

Iteration one results: To test the accuracy differential probes, two input voltages were given: ten volts and 

nine volts. The expected output should be one volt, but instead was found to be 0.9 V. The differential probe 

is for the most part accurate, with deviations due to deviations in the resistor values in the circuit. A second 

iteration with different resistors will be used for verification. 

 

Iteration two results: Identical results suggest that the deviations in the probes stem from low precision 

resistors. It is suggested that for the final implementation that incredibly high precision resistors are used 

for maximum accuracy. 

10.5 Testing the Data Extraction Feature 

Iteration one results: The first data extraction test is conducted using the Arduino Uno/Mega 2560. The 

results create data that appears sinusoidal, similar to what was expected. The values itself are similar in 

magnitude to the nominal battery voltage (DC value). Further data extraction tests with different microcon-

trollers are suggested to optimize the data extraction process. 

 

Iteration two results: The second data extraction test is conducted using ATMEGA 1284P. The recorded 

values are flat and static, with the magnitude incredibly similar to the nominal voltage of the battery. The 

issue is believed to be from improper optimization of the ADC, meaning a second test is needed. 

 

Iteration three results: The ATMEGA1284P is used for another test, this time with a properly optimized 

ADC. The data extracted this time is inherently sinusoidal with slight deviation, as expected. 

10.6 Testing the Output of the Biasing Circuit 

Iteration one results: The biased circuit outputs voltage values that are different from what was expected. 

It’s believed the discrepancy occurred due the capacitor blocking the original bias while also reducing our 

output swing. Using a capacitor of 200 µF, the circuit successfully biased the signals at all frequencies, but 

the output amplitude is reduced by half at high frequencies. A second test with different capacitors and 

different capacitance values is recommended. 

 

Iteration two results: Switching the capacitance to 10 µF fixes the amplitude issues at high frequencies. 

However, the issue now occurs at low frequencies (~10 Hz). Switching the capacitor to an average value in 

between 10 and 200 µF is recommended. 

 

Iteration three results: Switching the capacitance to 100 µF balances the output at all frequencies.  The 

tradeoff is that there is a consistent 0.1 V decrease in the amplitude. However, the circuit successfully biases 

the function generation chip output to be appropriate for the current injection module.  
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11 Conclusion and Future Work 

11.1 Conclusion 

After thorough design and testing of the device, it achieves most of the design specifications ini-

tially set. The device is able to generate, capture, and analyze a voltage response from the test battery 

when injected with a low sinusoidal current. Although system accuracy is unable to be fully verified, the 

trends from multiple tests follow the data patterns presented in the experiment on which the device is 

based on [3]. 

 

Objective Result Notes 

Ic∈ [1 mA,20 mA] Implemented N/A 

f∈ [1 Hz,1 KHz] Implemented A full frequency sweep was not possible for the implementa-

tion so frequency stepping of about 20 Hz was implemented 

Flexibility in test-

ing circuit 

Implemented Subsystems work completely independently so future modifica-

tion is possible 

Cross platform 

data movement 

Partially 

Implemented 

Code and development environments ran into difficulties when 

transitioning between Windows and Linux Operating systems. 

Accurate Data  

Collection 

Implemented N/A 

Overall accuracy 

of 10% 

Implemented Can be further improved to a higher accuracy range 

Low Cost Implemented Final implementation is well within cost objective 

Safe Power  

dissipation 

Implemented Basic level implemented can be improved 

Short testing time Implemented Can be further improved on but still much less than conven-

tional methods 

Easy to follow  

Circuitry 

Implemented PCB size not fully minimized but currently smaller than con-

ventional systems 

Process data Partially 

Implementing 

Data is processed but the results have not been checked against 

conventional system data 

Table 11.1 Implementation Status of Design Objectives 

 

For the partially implemented objectives a further explanation is found below: 

• Cross platform data movement was hindered by Pythons interaction with the Windows operat-

ing system and Microsoft Visual Studio. When in a Linux environment the Python script oper-

ated properly and formatted the data for MATLAB’s use. Many hours of debugging went into 

trying to get the conflict between windows and python to work but could not be fixed. 

 

• For the MATLAB processing it works properly. The only thing that has not been completely 

finished is an overall checking validation of the calculated data to data gathered from a con-

ventional system.  
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Throughout this project a lot of team and individual learning was required in order to be able to imple-

ment a working system. Individual members learned: 

 

• Jack Gatfield: 

• Team communication 

• Proper documentation of the design process 

• Communication between multiple levels of management 

• Methodical methods for hardware and software debugging, testing, and documenta-

tion 

• Understanding engineering optimization, trade-offs, and methodologies 

• Organization of circuits, documentation, and software functions 

• Understanding of working under deadlines. 

 

• Jack Gu: 

• Team communication 

• Communication between multiple levels of management 

• Being able to communicate ideas to others both textually and verbally 

• Methodical method for hardware debugging, testing, and documentation 

• Research in developing and testing components of a project 

• Understanding of engineering optimization and tradeoffs 

• Understanding of working under deadlines. 

 

• Joseph Gozum: 

• Team communication 

• Proper documentation of the design process 

• Understanding engineering optimization, trade-offs, and methodologies 

• Understanding of working under deadlines. 

• Methodical methods for software debugging, testing, and documentation.  

• Interfacing with multiples devices using different communication standards 

• Being able to communicate with different levels of management 
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11.2 Future Work  

The IBMS improves efficiency and viability of lithium-ion cells through frequency-based testing methods 

to catch poor health indicators. The current iteration of the design works, there are several key areas that 

can be improved upon to improve the overall system. 

 

• Overall size of the device. It can sit nicely on a desktop as it is now but can be further minimized 

by designing a PCB utilizing SMT components. 

 

• The PCB can also be further improved by separating the power generation, signal generation, and 

data acquisition sections. This helps to further reduce noise. Also having a dedicated ground for 

power, analog devices, and digital devices further reduces noise. 

 

• Precision could be greatly improved by incorporating a higher bit SAR ADC or even using an 

ADC based on the Sigma-Delta method. While the Sigma-Delta method is slower than a SAR 

ADC, it provides higher resolution, and the conversion speeds are satisfactory for the data collec-

tion process. The fastest frequency tested is 1 kHz this requires a sampling frequency at least 

twice that much which a Sigma-Delta ADC can satisfy. Another important benefit is that Sigma-

Delta ADCs provide the best noise isolation which is important with the small signals of the sys-

tem.  

  

• Pushing the current through the battery to its more upper limits may also prove to be useful in de-

termining the voltage response required in the impedance calculation, injecting more current may 

yield more noticeable results that can be more clearly captured but must be balanced with the 

safety risks.  

  

• Utilizing a microcontroller with DMA to its registers may prove helpful in the quality of the data 

capture as it reduces the time between each ADC reading. Currently with the SAR ADC built into 

the Atmega1284P, it takes a certain amount of time between each reading but a DMA could set it 

so that it takes care of transferring the ADC data while CPU has more time to focus on the actual 

acquisition.  

 

• The quality of input impedance calculation can also be improved by utilizing higher-tolerance 

and more wiper position digital potentiometers. Currently, every whole integer frequency within 

the specified range cannot be produced because of the limitations of the resistance selection with 

the digital potentiometer. Analog potentiometers also have the inability to set exact resistances 

which is an issue impossible to ignore.  

 

• The biggest improvement on this prototype is to implement the ability to test multiple battery 

cells at once; this could be accomplished through a multiplex selecting different batteries.  

 

• Utilize LabVIEW to create a signal GUI to interface with the device and processing. (Joseph Go-

zum) *Note: Very expensive option unless large additional funding 

 

Students of future classes should definitely look into improving this design. The time spent on 

this project has been fulfilling and great learning experience that really pushed this group to the limits of 

the knowledge learned while attending the University of California, Riverside.  
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The future market for this device is large. As the electric vehicle industry increases and a push for 

more renewable resources is implemented lithium ion batteries will become more used. This increased 

usage needs a better battery management system such as the one designed in this project to improve lon-

gevity and efficiency of the battery banks. 
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13 Appendices 

13.1 Appendix A: Parts List 

Parts in final circuit design 

Needed Part QTY. Used Part 

12V DC Power Adapter 1 12V DC Power Adapter 

 

Barrel Jack 1 Barrel Jack 

 

0.33uF non polarized capacitor 2 0.33uF non polarized capacitor 

 

0.1uF non polarized capacitor 4 0.1uF non polarized capacitor 

 

5V voltage regulator 1 L7805C 

10V voltage regulator 1 BA17810 

Voltage inverter 1 Max1044CPA+ 

Potentiometer (Digital for PCB, analog for 

through hole board) 

1 AD5242 

Function generating chip  1 XR2206 

2 level dip switches  2 2 level dip switches 

 

NPN BJT 1 2n2222a 

18650 battery holders 1 Surface 18650 battery holders 

 

18650 battery Test 

batch 

4 test batteries 

Op amp 1 LF353 

Microcontroller 1 Atmega1284p 

Programmer and cable 1 Atmega 1284p variations 

Program header 1 IEEE UCR programmer header 

Serial communication cable 1 FTDI Serial TTL-232 USB Cable 

Resistors (1Ω to 20kΩ) 25 1Ω, 15Ω, 100 Ω, 220 Ω, 300Ω, 1kΩ, 4.7kΩ, 

5.1kΩ, 10kΩ, 20kΩ 
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13.2 Appendix B: Equipment List 

Equipment Use 

Oscilloscope Check signals throughout circuits 

Desktop power supply Power circuit 

Multimeter Check different aspects of the circuit 

Computers Interface with the microcontroller, process the data, and allow for 

document making 

Arduinos Development and testing systems 

Solder station, board holder, and 

suction pen 

Solder the through hole and PCB together 

Breadboards Foundation of prototypes and testing 

Various resistors, capacitors, and 

ICs 

Used for development and testing 

  



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

98 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

13.3 Appendix C: Software List 

Software Use 

MATLAB Data Processing 

Python Command 

Shell 

Data Formatting 

PuTTY Serial Terminal for data capture and serial communication to microcontroller 

RealTerm Serial Terminal for data capture and serial communication to microcontroller 

Atmel studio Programming the microcontroller 

Eagle PCB PCB designing and file generation for printing 

AutoCAD Designing of housing for PCB 

LTspice Circuit simulation and design 

Arduino IDE Programming Arduino for testing throughout development 

Arduino Serial ter-

minal 

Terminal communication throughout development 

Microsoft Office 

Suite 

Documentation, presentation, and report generation and formatting. Excel was 

also used for data storage. 

Google Doc Suite Documentation, presentation, and report generation and formatting 

Google Hangouts Team meeting when not in person 
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13.4 Appendix E: User’s Manual 

DIGITAL TEST: 

1. Connect the power supply into a wall outlet 

2. Connect the serial cable to the processing laptop 

3. Select type of test. 

a) Frequency Sweep 

b) Singular frequency 

4. Connect battery into a battery holder 

5. Enable test 

6. Wait for processing to occur 

7. Acquire results and repeat if needed. 

8.  

NOTE: 

• When testing with singular frequencies, please allow for a minimum time of a minute to pass before 

attempting a test at a different frequency. This is to ensure safety as well as to prevent transient 

responses that could potentially damage the device. 

•  

ANALOG TEST: 

1. Connect the appropriate power supply to each individual component of the circuit. 

a) For the amplifiers, feed a +10V/-10V into the LF353’s power terminals. 

b) For the Function generation module, feed a 12V power supply into the XR2206’s 

power terminals. 

c) For the biasing module, feed a 5V power supply into the power terminal of the 

biasing module. 

2. Using an oscilloscope for reference, adjust the potentiometer until the desired frequency is reached. 

Rotate the potentiometer clockwise to increase input frequency and vice versa. 

3. Once satisfied, connect the biasing module output to the current injection circuit. 

4. Place the battery into the battery holder. 

5. Measure results 

6. Disconnect the battery first then the output of the biasing module. 

7. Repeat steps 2-6 as needed. 

8.  

NOTE: 

• When doing multiple tests, please allow for a time delay of thirty seconds before reconnecting new 

frequency inputs into the current injection circuit. This is done due to safety concerns. 

• If doing a step and trying to minimize test times, keep to low step sizes (<10 Hz). 

• If an emergency occurs and there are unexpected shorts or other issues, disconnect the battery im-

mediately to cause the emergency shutdown. 
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13.5 Appendix F: Frequency Lookup Table (DIGITAL) 

Desired 

Frequency 
Terminal 

Value 

(HEX) 

Re-
sistance 

(Ω) 

Capaci-
tance 

(µF) 

Digi pot 
value 

(HEX) 

Period (s) Period (minutes) Collection rate (Pe-

riod/256) 
Delay 

(ms) 

1 Hz 23 10K 100 2 1 0.01666666667 0.00390625 0.004 

4 Hz 24 2.5K 100 0 0.25 0.004166666667 0.0009765625 0.001 

7 Hz 25 1.42K 0.1 0 0.1428571429 0.002380952381 0.0005580357143 0 

10 Hz 26 1M 0.1 FF 0.1 0.001666666667 0.000390625 0 

13 Hz 27 769.23K 0.1 C4 0.07692307692 0.001282051282 0.0003004807692 0 

16 Hz 28 625K 0.1 9F 0.0625 0.001041666667 0.000244140625 0 

19 Hz 29 526.32K 0.1 86 0.05263157895 0.0008771929825 0.0002055921053 0 

22 Hz 2A 454.55K 0.1 74 0.04545454545 0.0007575757576 0.0001775568182 0 

25 Hz 2B 400K 0.1 66 0.04 0.0006666666667 0.00015625 0 

28 Hz 2C 357.14K 0.1 5B 0.03571428571 0.0005952380952 0.0001395089286 0 

31 Hz 2D 322.58K 0.1 52 0.03225806452 0.0005376344086 0.0001260080645 0 

34 Hz 2E 294.12K 0.1 4B 0.02941176471 0.0004901960784 0.0001148897059 0 

37 Hz 2F 270.27K 0.1 45 0.02702702703 0.0004504504505 0.0001055743243 0 

40 Hz 30 250K 0.1 3F 0.025 0.0004166666667 0.00009765625 0 

43 Hz 31 232.56K 0.1 3B 0.02325581395 0.0003875968992 0.00009084302326 0 

46 Hz 32 217.39K 0.1 37 0.02173913043 0.0003623188406 0.00008491847826 0 

49 Hz 33 204.09K 0.1 34 0.02040816327 0.0003401360544 0.00007971938776 0 

52 Hz 34 192.31K 0.1 31 0.01923076923 0.0003205128205 0.00007512019231 0 

55 Hz 35 181.18K 0.1 2E 0.01818181818 0.000303030303 0.00007102272727 0 

58 Hz 36 172.41K 0.1 2C 0.01724137931 0.0002873563218 0.00006734913793 0 

60 Hz 37 166.67K 0.1 2A 0.01666666667 0.0002777777778 0.00006510416667 0 
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Desired 

Fre-

quency 

Terminal 

Value 

(HEX) 

Re-

sistance 

(Ω) 

Capaci-

tance 

(µF) 

Digi pot 

value 

(HEX) 

Period (s) Period (minutes) Collection rate (Pe-

riod/256) 
Delay 

(ms) 

61 Hz 38 163.93K 0.1 29 0.01639344262 0.0002732240437 0.00006403688525 0 

64 Hz 39 156.25K 0.1 27 0.015625 0.0002604166667 0.00006103515625 0 

67 Hz 3A 149.25K 0.1 26 0.01492537313 0.0002487562189 0.00005830223881 0 

70 Hz 3B 142.86K 0.1 24 0.01428571429 0.0002380952381 0.00005580357143 0 

73 Hz 3C 136.99K 0.1 23 0.01369863014 0.0002283105023 0.00005351027397 0 

76 Hz 3D 131.58K 0.1 3 0.01315789474 0.0002192982456 0.00005139802632 0 

79 Hz 3E 126.58K 0.1 20 0.01265822785 0.0002109704641 0.00004944620253 0 

82 Hz 3F 121.95K 0.1 1F 0.01219512195 0.0002032520325 0.00004763719512 0 

85 Hz 40 117.65K 0.1 1E 0.01176470588 0.0001960784314 0.00004595588235 0 

88 Hz 41 113.64K 0.1 1D 0.01136363636 0.0001893939394 0.00004438920455 0 

91 Hz 42 109.89K 0.1 1C 0.01098901099 0.0001831501832 0.00004292582418 0 

94 Hz 43 106.38K 0.1 1B 0.01063829787 0.0001773049645 0.00004155585106 0 

97 Hz 44 103.09K 0.1 1A 0.01030927835 0.0001718213058 0.00004027061856 0 

100 Hz 45 100K 0.1 19 0.01 0.0001666666667 0.0000390625 0 

120 Hz 46 83.33K 0.1 15 0.008333333333 0.0001388888889 0.00003255208333 0 

130 Hz 47 76.92K 0.1 13 0.007692307692 0.0001282051282 0.00003004807692 0 

160 Hz 48 62.5K 0.1 0F 0.00625 0.0001041666667 0.0000244140625 0 

190 Hz 49 52.63K 0.1 0D 0.005263157895 0.00008771929825 0.00002055921053 0 

220 Hz 4A 45.45K 0.1 0B 0.004545454545 0.00007575757576 0.00001775568182 0 

250 Hz 4B 40K 0.1 0A 0.004 0.00006666666667 0.000015625 0 

280 Hz 4C 35.71K 0.1 9 0.003571428571 0.00005952380952 0.00001395089286 0 

310 Hz 4D 32.26K 0.1 8 0.003225806452 0.00005376344086 0.00001260080645 0 

340 Hz 4E 29.41K 0.1 7 0.002941176471 0.00004901960784 0.00001148897059 0 
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Desired 

Fre-

quency 

Terminal 

Value 

(HEX) 

Re-

sistance 

(Ω) 

Capaci-

tance 

(µF) 

Digi pot 

value 

(HEX) 

Period (s) Period (minutes) Collection rate (Pe-

riod/256) 
Delay 

(ms) 

370 Hz 4F 27.03K 0.1 6 0.002702702703 0.00004504504505 0.00001055743243 0 

400 Hz 50 25K 0.1 6 0.0025 0.00004166666667 0.000009765625 0 

430 Hz 51 23.26K 0.1 5 0.002325581395 0.00003875968992 0.000009084302326 0 

460 Hz 52 21.74K 0.1 5 0.002173913043 0.00003623188406 0.000008491847826 0 

490 Hz 53 20.41K 0.1 5 0.002040816327 0.00003401360544 0.000007971938776 0 

520 Hz 54 19.23K 0.1 4 0.001923076923 0.00003205128205 0.000007512019231 0 

550 Hz 55 18.18K 0.1 4 0.001818181818 0.0000303030303 0.000007102272727 0 

580 Hz 56 17.24K 0.1 4 0.001724137931 0.00002873563218 0.000006734913793 0 

610 Hz 57 16.39K 0.1 4 0.001639344262 0.00002732240437 0.000006403688525 0 

640 Hz 58 15.63K 0.1 4 0.0015625 0.00002604166667 0.000006103515625 0 

670 Hz 59 14.93K 0.1 3 0.001492537313 0.00002487562189 0.000005830223881 0 

700 Hz 5A 14.29K 0.1 3 0.001428571429 0.00002380952381 0.000005580357143 0 

730 Hz 5B 13.69K 0.1 3 0.001369863014 0.00002283105023 0.000005351027397 0 

760 Hz 5C 13.16K 0.1 3 0.001315789474 0.00002192982456 0.000005139802632 0 

790 Hz 5D 12.66K 0.1 3 0.001265822785 0.00002109704641 0.000004944620253 0 

820 Hz 5E 12.2K 0.1 3 0.001219512195 0.00002032520325 0.000004763719512 0 

850 Hz 5F 11.76K 0.1 3 0.001176470588 0.00001960784314 0.000004595588235 0 

880 Hz 60 11.36K 0.1 2 0.001136363636 0.00001893939394 0.000004438920455 0 

910 Hz 61 10.99K 0.1 2 0.001098901099 0.00001831501832 0.000004292582418 0 

940 Hz 62 10.64K 0.1 2 0.001063829787 0.00001773049645 0.000004155585106 0 

970 Hz 63 10.31K 0.1 2 0.001030927835 0.00001718213058 0.000004027061856 0 

1 KHz 64 10K 0.1 2 0.001 0.00001666666667 0.00000390625 0 
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13.6 Appendix G: Frequency Lookup Table (ANALOG) 

Desired Frequency Resistance Capacitance 

1 Hz 10K 100µF 

4 Hz 2.5K 100µ F 

7 Hz 1.42K 0.1µ F 

10 Hz 1M 0.1µ F 

13 Hz 769.23K 0.1µ F 

16 Hz 625K 0.1µ F 

19 Hz 526.32K 0.1µ F 

22 Hz 454.55K 0.1µ F 

25 Hz 400K 0.1µ F 

28 Hz 357.14K 0.1µ F 

31 Hz 322.58K 0.1µ F 

34 Hz 294.12K 0.1µ F 

37 Hz 270.27K 0.1µ F 

40 Hz 250K 0.1µ F 

43 Hz 232.56K 0.1µ F 

46 Hz 217.39K 0.1µ F 

49 Hz 204.09K 0.1µ F 

52 Hz 192.31K 0.1µ F 

55 Hz 181.18K 0.1µ F 

58 Hz 172.41K 0.1µ F 

60 Hz(*) 166.67K 0.1µ F 

61 Hz 163.93K 0.1µ F 

64 Hz 156.25K 0.1µ F 

67 Hz 149.25K 0.1µ F 

70 Hz 142.86K 0.1µ F 

73 Hz 136.99K 0.1µ F 

76 Hz 131.58K 0.1µ F 

79 Hz 126.58K 0.1µ F 

82 Hz 121.95K 0.1µ F 

85 Hz 117.65K 0.1µ F 

88 Hz 113.64K 0.1µ F 

91 Hz 109.89K 0.1µ F 

94 Hz 106.38K 0.1µ F 

97 Hz 103.09K 0.1µ F 

100 Hz 100K 0.1µ F 

120 Hz (*) 83.33K 0.1µ F 

130 Hz 76.92K 0.1µ F 
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Desired Frequency Resistance Capacitance 

160 Hz 62.5K 0.1µ F 

190 Hz 52.63K 0.1µ F 

220 Hz 45.45K 0.1µ F 

250 Hz 40K 0.1µ F 

280 Hz 35.71K 0.1µ F 

310 Hz 32.26K 0.1µ F 

340 Hz 29.41K 0.1µ F 

370 Hz 27.03K 0.1µ F 

400 Hz 25K 0.1µ F 

430 Hz 23.26K 0.1µ F 

460 Hz 21.74K 0.1µ F 

490 Hz 20.41K 0.1µ F 

520 Hz 19.23K 0.1µ F 

550 Hz 18.18K 0.1µ F 

580 Hz 17.24K 0.1µ F 

610 Hz 16.39K 0.1µ F 

640 Hz 15.63K 0.1µ F 

670 Hz 14.93K 0.1µ F 

700 Hz 14.29K 0.1µ F 

730 Hz 13.69K 0.1µ F 

760 Hz 13.16K 0.1µ F 

790 Hz 12.66K 0.1µ F 

820 Hz 12.2K 0.1µ F 

850 Hz 11.76K 0.1µ F 

880 Hz 11.36K 0.1µ F 

910 Hz 10.99K 0.1µ F 

940 Hz 10.64K 0.1µ F 

970 Hz 10.31K 0.1µ F 

1 KHz 10K 0.1µ F 
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13.7 Appendix H: MATLAB Code/Data formatting code 

Frequency Sweep Data Processing Code 

clear all; 

close all; 

clc; 

  

%variable decloration 

BatteryVoltage = 3.2; 

CurrentResistor = 1; 

FrequencyCount = 1; 

CurrentGain     = 9.2; 

  

PhaseRunner = 0:(8*pi)/255:8*pi; 

t = 1:256; 

  

FrequencyRange = [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 60, 61, 64, 

67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 120, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400, 

430, 460, 490, 520, 550, 580, 610, 640, 670, 700, 730, 760, 790, 820, 850, 880, 910, 940, 970, 1000];  

[FrequencyRows,FrequencyColumn] = size(FrequencyRange); 

  

BatteryImpedence = zeros(1,256); 

  

AvgVoltagePull = zeros(1,FrequencyColumn); 

AvgCurrentPull = zeros(1,FrequencyColumn); 

AvgBatteryImpedence = zeros(1,FrequencyColumn); 

AvgComplexBatteryImpedence = zeros(1,FrequencyColumn); 

  

%loop through all test frequencys --> 66 total frequencies 

for FrequencyCount =1:FrequencyColumn %FrequencySize 

  

filename = sprintf('%s_%d','TestData',FrequencyRange(FrequencyCount)); 

filename = strcat(filename, ".csv"); 

  

%Pulls columns in from Excel Sheet that the serial terminal will popualte 

Voltage1 = xlsread(filename,"A2:A257"); %Gets data for voltage calculations 

Voltage2 = xlsread(filename,"A258:A513"); 

Voltage3 = xlsread(filename,"A514:A769"); 

Voltage4 = xlsread(filename,"A770:A1025"); 

Voltage5 = xlsread(filename,"A1026:A1281"); 

  

CurrentVoltage1 = xlsread(filename,"A1282:A1537"); %Gets data for current calculations 

CurrentVoltage2 = xlsread(filename,"A1538:A1793"); 

CurrentVoltage3 = xlsread(filename,"A1794:A2049"); 

CurrentVoltage4 = xlsread(filename,"A2050:A2305"); 

CurrentVoltage5 = xlsread(filename,"A2306:A2561"); 
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%Transposes column array to be a row array 

Voltage1 = Voltage1'; 

Voltage2 = Voltage2'; 

Voltage3 = Voltage3'; 

Voltage4 = Voltage4'; 

Voltage5 = Voltage5'; 

  

CurrentVoltage1 = CurrentVoltage1';  

CurrentVoltage2 = CurrentVoltage2'; 

CurrentVoltage3 = CurrentVoltage3'; 

CurrentVoltage4 = CurrentVoltage4'; 

CurrentVoltage5 = CurrentVoltage5'; 

  

%Subtracts the battery voltage out of the reading 

Voltage1_mag = Voltage1 - BatteryVoltage; 

Voltage2_mag = Voltage2 - BatteryVoltage; 

Voltage3_mag = Voltage3 - BatteryVoltage; 

Voltage4_mag = Voltage4 - BatteryVoltage; 

Voltage5_mag = Voltage5 - BatteryVoltage; 

  

%Divides by the test resistor value to get current 

Current1 = CurrentVoltage1 / CurrentResistor; 

Current2 = CurrentVoltage2 / CurrentResistor; 

Current3 = CurrentVoltage3 / CurrentResistor; 

Current4 = CurrentVoltage4 / CurrentResistor; 

Current5 = CurrentVoltage5 / CurrentResistor; 

  

%Divide by the current gain to get actual gain 

Current1 = Current1 / CurrentGain; 

Current2 = Current2 / CurrentGain; 

Current3 = Current3 / CurrentGain; 

Current4 = Current4 / CurrentGain; 

Current5 = Current5 / CurrentGain; 

  

%Take average of the multiple voltage data trials to isolate noise 

Voltage_TotalMag = Voltage1_mag+ Voltage2_mag + Voltage3_mag + Voltage4_mag + Volt-

age5_mag; 

Voltage_AvgMag = Voltage_TotalMag / 5; 

  

%Takes avearge of the multiple current data trials to isolate noise 

Current_TotalMag = Current1 + Current2 + Current3 + Current4 + Current5; 

Current_AvgMag= Current_TotalMag / 5; 

  

%Calculate battery impedence magnituded 

for i = 1:256 

    if Current_AvgMag(i) ~= 0 

        BatteryImpedence(i) = Voltage_AvgMag(i) ./ Current_AvgMag(i); 

    end 

end 
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%Find phase shift 

TestSin = sin(FrequencyRange(FrequencyCount).*PhaseRunner); 

Average_Battery_Phase    = mean(Voltage_AvgMag); 

Amplitude_Battery_Phase  = (max(Voltage_AvgMag)-min(Voltage_AvgMag))/2; 

Peak_Battery      = 100 * 2 * pi; 

Phaseshift_Battery = 0; 

  

myfit = NonLinearModel.fit(PhaseRunner,Voltage_AvgMag, 

                            'y~b0+b1*sin(b2*x1+b3)'; 

                            [Average_Battery_Phase, 

                            Amplitude_Battery_Phase, 

                            Peak_Battery, 

                            Phaseshift_Battery]); 

  

Z_PhaseShif_radians = acos(dot(myfit.Fitted,TestSin)/(norm(TestSin)*norm(myfit.Fitted))); 

Z_PhaseShif_degrees = Z_PhaseShif_radians * 360 / (2*pi); 

  

%Polar to Rectangular 

x = BatteryImpedence.*cos(Z_PhaseShif_degrees); 

y = BatteryImpedence.*sin(Z_PhaseShif_degrees); 

ComplexImpedence = complex(x,y); 

  

%disp(Z_PhaseShif_radians); 

AvgVoltagePull(FrequencyCount)              = mean(Voltage_AvgMag); 

AvgCurrentPull(FrequencyCount)              = mean(Current_AvgMag); 

AvgBatteryImpedence(FrequencyCount)         = mean(BatteryImpedence); 

AvgComplexBatteryImpedence(FrequencyCount)  = mean(ComplexImpedence); 

  

end 
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%Graphing code 

figure(1) 

subplot(4, 1, 1) 

    hold on 

        stem(FrequencyRange,AvgVoltagePull) 

        title("Average Voltage") 

            xlabel("Frequency") 

            ylabel("Magnitude [Volts]") 

                grid on 

    hold off 

  

subplot(4, 1, 2) 

    stem(FrequencyRange,AvgCurrentPull) 

        title("Injected Current") 

            xlabel("Frequency") 

            ylabel("Magnitude [Amps]") 

                grid on 

 

 

subplot(4, 1, 3) 

    stem(FrequencyRange, AvgBatteryImpedence) 

        title("Average Magnitude of Battery Impedence") 

        xlabel("Frequency") 

        ylabel("Magnitude [Ohms]") 

            grid on 

 

subplot(4, 1, 4) 

    scatter(real(ComplexImpedence),imag(ComplexImpedence)) 

        title("Battery's Impedence (X+jY)") 

        xlabel("Real (X) [Ohms]") 

        ylabel("Imaginary (jY) [Ohms]") 

            grid on 
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Single Frequency Data Processing Code 

clear all; 

close all; 

clc; 

  

%variable decloration 

BatteryVoltage  = 3.5; 

CurrentResistor = 1; 

Frequency       = 13; 

CurrentGain     = 9.2; 

  

PhaseRunner = 0:(8*pi)/255:8*pi; 

t = 1:256; 

  

%Generates file name to pull the data from 

filename = sprintf('%s_%d','TestData',Frequency); 

filename = strcat(filename, ".csv") 

  

%Pulls columns in from Excel Sheet that the serial terminal will popualte 

Voltage1 = xlsread(filename,"A2:A257"); %Gets data for voltage calculations 

Voltage2 = xlsread(filename,"A258:A513"); 

Voltage3 = xlsread(filename,"A514:A769"); 

Voltage4 = xlsread(filename,"A770:A1025"); 

Voltage5 = xlsread(filename,"A1026:A1281"); 

  

CurrentVoltage1 = xlsread(filename,"A1282:A1537"); %Gets data for current calculations 

CurrentVoltage2 = xlsread(filename,"A1538:A1793"); 

CurrentVoltage3 = xlsread(filename,"A1794:A2049"); 

CurrentVoltage4 = xlsread(filename,"A2050:A2305"); 

CurrentVoltage5 = xlsread(filename,"A2306:A2561"); 

  

%Transposes column array to be a row array 

Voltage1 = Voltage1'; 

Voltage2 = Voltage2'; 

Voltage3 = Voltage3'; 

Voltage4 = Voltage4'; 

Voltage5 = Voltage5'; 

  

CurrentVoltage1 = CurrentVoltage1';  

CurrentVoltage2 = CurrentVoltage2'; 

CurrentVoltage3 = CurrentVoltage3'; 

CurrentVoltage4 = CurrentVoltage4'; 

CurrentVoltage5 = CurrentVoltage5'; 
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%Subtracts the battery voltage out of the reading 

Voltage1_mag = Voltage1 - BatteryVoltage; 

Voltage2_mag = Voltage2 - BatteryVoltage; 

Voltage3_mag = Voltage3 - BatteryVoltage; 

Voltage4_mag = Voltage4 - BatteryVoltage; 

Voltage5_mag = Voltage5 - BatteryVoltage; 

  

%Divides by the test resistor value to get current 

Current1 = CurrentVoltage1 / CurrentResistor; 

Current2 = CurrentVoltage2 / CurrentResistor; 

Current3 = CurrentVoltage3 / CurrentResistor; 

Current4 = CurrentVoltage4 / CurrentResistor; 

Current5 = CurrentVoltage5 / CurrentResistor; 

  

%Divide by the current gain to get actual gain 

Current1 = Current1 / CurrentGain; 

Current2 = Current2 / CurrentGain; 

Current3 = Current3 / CurrentGain; 

Current4 = Current4 / CurrentGain; 

Current5 = Current5 / CurrentGain; 

  

%Take average of the multiple voltage data trials to isolate noise 

Voltage_TotalMag = Voltage1_mag+ Voltage2_mag + Voltage3_mag + Voltage4_mag + Volt-

age5_mag; 

Voltage_AvgMag = Voltage_TotalMag / 5; 

  

%Takes avearge of the multiple current data trials to isolate noise 

Current_TotalMag = Current1 + Current2 + Current3 + Current4 + Current5; 

Current_AvgMag = Current_TotalMag / 5; 

  

%Calculate battery impedence magnituded 

for i = 1:256 

    if Current_AvgMag(i) ~= 0 

        BatteryImpedence(i) = Voltage_AvgMag(i) ./ Current_AvgMag(i); 

    else 

        BatteryImpedence(i) = 0; 

    end 

end 

  

%Find phase shift 

TestSin = sin(Frequency.*PhaseRunner); 

  

%Find actualy battery impedence 

Average_Battery_Phase    = mean(Voltage_AvgMag); 

Amplitude_Battery_Phase  = (max(Voltage_AvgMag)- min(Voltage_AvgMag))/2; 

Peak_Battery      = 100 * 2 * pi; 

Phaseshift_Battery = 0; 

 

 



JG3 

Dept. of Electrical and Computer Engineering, UCR 

EE175AB Final Report: Battery Impedance  

June 10, 2019; Version 2.0 

  

111 of 125 

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California 
 

%myfit = NonLinearModel.fit(PhaseRunner,Voltage_AvgMag,'y~b0+b1*sin(b2*x1+b3)',[Aver-

age_Battery_Phase,Amplitude_Battery_Phase,Peak_Battery,Phaseshift_Battery]); 

myfit = NonLinearModel.fit(PhaseRunner,Voltage1_mag,'y~b0+b1*sin(b2*x1+b3)',[Average_Bat-

tery_Phase,Amplitude_Battery_Phase,Peak_Battery,Phaseshift_Battery]); 

  

Z_PhaseShif_radians = acos(dot(myfit.Fitted,TestSin)/(norm(TestSin)*norm(myfit.Fitted))); 

Z_PhaseShif_degrees = Z_PhaseShif_radians * 360 / (2*pi); 

 

%Polar to Rectangular 

x = BatteryImpedence.*cos(Z_PhaseShif_degrees); 

y = BatteryImpedence.*sin(Z_PhaseShif_degrees); 

ComplexImpedence = complex(x,y); 

  

disp(Z_PhaseShif_radians) 

  

%Graphing code 

figure(1) 

subplot(6, 1, 1) 

    hold on 

        stem(Voltage1_mag) 

        stem(Voltage2_mag) 

        stem(Voltage3_mag) 

        stem(Voltage4_mag) 

        stem(Voltage5_mag) 

            title("Pulled in Data Array") 

            xlabel("Data Point") 

            ylabel("Magnitude [Volts]") 

            legend('First Data Array', 'Second Data Array', 'Thrid Data Array', 'Fourth data array', 'Fifth  

Data Array') 

                grid on 

    hold off 

  

subplot(6, 1, 2) 

    stem(Current_AvgMag) 

        title("Average Magnitude of Branch Current") 

            xlabel("Data Point") 

            ylabel("Magnitude [Amps]") 

                grid on 

  

subplot(6, 1, 3) 

    stem(Voltage_AvgMag) 

        title("Average Magnitude of Battery's Voltage Drop") 

        xlabel("Data Point") 

        ylabel("Magnitude [Volts]") 

            grid on 
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subplot(6, 1, 4) 

    stem(BatteryImpedence) 

        title("Magnitude of the Battery's Impedence") 

        xlabel("Data Point") 

        ylabel("Magnitude [Ohms]") 

            grid on 

  

subplot(6, 1, 5) 

    hold on 

        plot(PhaseRunner,myfit.Fitted) 

        plot(PhaseRunner,Voltage_AvgMag) 

            title("Sinusoidal Fit") 

            xlabel("Data Points") 

            ylabel("Magnitude [Volts]") 

            legend('Fitted Equation','Test Points') 

                grid on 

    hold off 

 

subplot(6, 1, 6) 

    scatter(real(ComplexImpedence),imag(ComplexImpedence)) 

        title("Battery's Impedence") 

            xlabel("Real (X) [Ohms]") 

            ylabel("Imaginary (jY) [Ohms]") 

                grid on 
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Data Formatting – Python 

#!/usr/bin/python 

 

"""preprocessing.py: This script takes the terminal output of the Impedance-based BMS device and 

converts from UTF-8 characters to actual voltage values read by ADC on microcontroller."""  

 

import argparse 

import binascii  

import csv 

import os 

import sys 

from pathlib import Path 

 

#======================================================  

def formatting(currentFile, outputFile):  

 readCapture = open(currentFile, "rb") # Opens & reads contents of given text file as binary  

 lines = readCapture.readlines()   # Stores lines into a list with one entry per line from txt file 

 readCapture.close()       

# Closes object file  

   

 # Initializes a list of list required to write into a CSV file 

 # There are as many indicies as there is data points collected 

 csvData = [ [] for cell in range(0, round(len( lines[5][:] ) / 2 )) ]  

  

 sublist_index = 0 # Index to traverse sublists  

 for c in range(0, len(lines[5])-1):  # Data is specifically found on line 5 

  if(c % 2 == 0): # Every two characters are combined together 

   adc_value = ((lines[5][c]) << 8) + lines[5][c+1] # Complete 10-bit 

value from ADC 

   voltage = float(adc_value) * float(5/1023) # Conversion of binary to 

floating point 

   csvData[sublist_index].append(voltage)   

   # Appends converted value to list of lists used in making CSV file 

   sublist_index += 1     

      # Increases index by 1 

 

 csvData.insert(0, ['Voltage Reading'])   

 # Appends a title for the column 

 

 del csvData[-1] 

 

 with open(outputFile, 'w', newline='') as csvCaptureFile:      # Opens and pre-

pares csv file for writing to 

  writer = csv.writer(csvCaptureFile) 

  writer.writerows(csvData)  # Writes each sublist of csvData to newline of cap-

ture.csv 

 csvCaptureFile.close() # Closes csv file 
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#====================================================== 

 

def main():  

 parser = argparse.ArgumentParser(description='Takes raw HEX data from impedance testing 

and converts into Base-10 equivalent.') 

 parser.add_argument('-i', '--input', help='Full filepath of folder containing raw data in txt files 

from testing', required=True) 

 parser.add_argument('-o', '--output', help='Full filepath of output file of the newly formatted 

raw data', required=True) 

 args = parser.parse_args() 

  

 workingDirectory = Path(args.input)     

  # Automatically converts given input filepath to right format for the current oper-

ating system 

  

 if workingDirectory.exists():     

  print('Woohoo, directory exists.') 

 else:  

  print("The given input directory does not exist.") 

  sys.exit(2)       

     # Exits the script 

   

 workingFiles = os.listdir(workingDirectory)   

  

 for files in workingFiles:  

  formatting( Path(args.input + '/' + files + '/' + files + '.txt'), (args.output + '_' + files 

+ '.csv') ) 

   

#====================================================== 

 

if __name__ == "__main__":  

 main() 

 

#====================================================== 
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13.8 Appendix I: Microcontroller Code 

Main Function loop 

#include <avr/io.h> 

#include <avr/eeprom.h> 

#include "ADC.c" 

#include "twimaster.c" 

#include "frequency_table.c" 

#include "usart.c" 

 

#define TRUE 1          // 

Defines TRUE as always being 1, used for control purposes 

#define FALSE 0          // 

Defines FALSE as always being 0, used for control purposes 

#define NUM_DATA_POINTS (5*256)      // Number of data 

points to collect from ADC during acquisition 

#define LENGTH(x) ( sizeof(x) / sizeof((x)[0]) ) // Macro to determine number of elements in a given 

array 

 

// Flags used for state machine transitions, all initialized to FALSE (0) 

volatile unsigned char ADC_ACQUISITION_COMPLETE  = FALSE;  

volatile unsigned char BUTTON_INPUT     = FALSE;  

volatile unsigned char USART_TRANSMISSION_COMPLETE = FALSE;  

volatile unsigned char USART_RX_RECEIVED_FLAG  = FALSE;  

volatile unsigned char I2C_TRANSMIT_SUCESS_FLAG  = FALSE;  

 

// Global variables 

volatile unsigned char USART_RECEIVED_DATA = 0x00;  

volatile unsigned char voltages [(NUM_DATA_POINTS+NUM_DATA_POINTS)];  

volatile unsigned char current [(NUM_DATA_POINTS+NUM_DATA_POINTS)];  

 

// Strings sent to terminal to help user know what state they are in 

char initialize_statement[]  = {"Initializing. . ."}; 

char wait_statement[]   = {"Begin test?"}; 

char input_statement[]   = {"Choose frequency: "};  

char set_statement[]   = {"Setting resistor. . ."}; 

char acquire_statement[]  = {"Acquiring Data . . ."};  

char transmit_statement[]  = {"Sending Data. . ."};   
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//============================== State Machine ============================== 

enum States {INITIALIZE, WAIT, INPUT, SET, ACQUIRE, TRANSMIT} state; 

  

void StateManager() { 

  

 unsigned short voltage_reading = 0;  

  

 // Switch statement for state transitions 

 switch(state) { 

  case INITIALIZE:  

   break;   

  case WAIT:  

   if( BUTTON_INPUT == TRUE ) { 

    BUTTON_INPUT = FALSE;  

    state = INPUT; 

   } 

   else { 

    state = WAIT;  

   } 

   break;  

  case INPUT:  

   if( USART_RX_RECEIVED_FLAG == TRUE ) { 

    USART_RX_RECEIVED_FLAG = FALSE;  

    state = SET;  

   } 

   else { 

    state = INPUT;  

   } 

   break; 

  case SET:  

   if( I2C_TRANSMIT_SUCESS_FLAG == TRUE ) { 

    I2C_TRANSMIT_SUCESS_FLAG = FALSE;  

    state = ACQUIRE;  

   } else { 

    state = SET;  

   } 

   break; 

  case ACQUIRE: 

   if( ADC_ACQUISITION_COMPLETE == TRUE ) { 

    ADC_ACQUISITION_COMPLETE = FALSE;  

    state = TRANSMIT;  

   } 

   else { 

    state = TRANSMIT;  

   } 

   break; 

  case TRANSMIT:  

   if( USART_TRANSMISSION_COMPLETE == TRUE ) { 

    USART_TRANSMISSION_COMPLETE = FALSE;  
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    state = WAIT; 

   } 

   else { 

    state = TRANSMIT;  

   } 

   break;    

  default: 

   break;  

 } 

 //Switch statement for state actions 

 switch(state) { 

  case INITIALIZE: 

   USART_init(); 

   USART_transmit_string(initialize_statement);  

   ADC_init(); 

   init_frequency_table(); 

   state = WAIT;  

   break; 

  case WAIT: 

   USART_transmit_string(wait_statement);  

   while((PINC & 0x01) == 0);  

   BUTTON_INPUT = TRUE;  

   break; 

  case INPUT: 

   USART_transmit_string(input_statement);  

   while ( !(UCSR0A & (1 << RXC0)) ); 

   USART_RECEIVED_DATA = UDR0;  

   USART_RX_RECEIVED_FLAG = TRUE;  

   break;  

  case SET:  

   USART_transmit_string(set_statement);  

   while((PINC & 0x01) == 0);  

   I2C_TRANSMIT_SUCESS_FLAG = TRUE;  

   break;  

  case ACQUIRE: 

   USART_transmit_string(acquire_statement);  

    

   for(unsigned int i = 0; i < LENGTH(voltages); i = i + 2) {  

    voltage_reading = ADC;  

    voltages[i] = (char)((voltage_reading & 0x0300) >> 8); 

    voltages[i+1] = (char)(voltage_reading & 0x00FF);    

   } 

   switch_ADC(1);  

   for(unsigned int i = 0; i < LENGTH(current); i = i + 2) { 

    voltage_reading = ADC;  

    current[i] = (char)((voltage_reading & 0x0300) >> 8); 

    current[i+1] = (char)(voltage_reading & 0x00FF); 

                    }    

   switch_ADC(0);  
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   ADC_ACQUISITION_COMPLETE = TRUE;  

   break; 

  case TRANSMIT: 

   USART_transmit_string(transmit_statement);  

   for(unsigned int j = 0; j < LENGTH(voltages); j++) { 

    USART_transmit(voltages[j]); 

   } 

   for(unsigned int j = 0; j < LENGTH(current); j++) { 

    USART_transmit(current[j]);  

   } 

   USART_transmit_newline();  

   USART_TRANSMISSION_COMPLETE = TRUE;  

   break;  

  default: 

   state = INITIALIZE;  

   break; 

 }  

} 

int main(void) { 

 DDRC = 0xFE; PORTC = 0x00;  // Configure PORTC PIN0 as input, initialize 

to 0s 

  

 state = INITIALIZE;    // Makes the first state Initialize on startup 

    while (1) { 

  StateManager();  

    } 

} 
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ADC.C Header 

void ADC_init( void ) { 

 ADMUX = 0x00; //Default value 

 ADCSRA |= (1 << ADEN) | (1 << ADSC) | (1 << ADATE); 

 // ADCSRA = 0xC0  

 // Current configuration is Single Conversion mode.  

 // ADEN: setting this bit enables analog-to-digital conversion.  

 // ADSC: setting this bit starts the conversion.  

 // Current configuration has Vin connected to PA0. 

 // The AREF (Vref) pin is connected directly to the +5 Volt power supply 

 // AREF is the pin located between PA7 and the ground pin.  

} 

 

// Right now, only switches ADC to channel 1 

void switch_ADC( unsigned char whichADC ) { 

 if(whichADC == 1) ADMUX = 0x01; 

 else { 

  ADMUX = 0x00;  

 }  

 ADCSRA |= (1 << ADEN) | (1 << ADSC) | (1 << ADATE); 

 // ADCSRA = 0xC0 

 // Current configuration is Single Conversion mode. 

 // ADEN: setting this bit enables analog-to-digital conversion. 

 // ADSC: setting this bit starts the conversion. 

 // Current configuration has Vin connected to PA0. 

 // The AREF (Vref) pin is connected directly to the +5 Volt power supply 

 // AREF is the pin located between PA7 and the ground pin. 

} 
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Twimaster.c Header file 
/************************************************************************* 

* Title:    I2C master library using hardware TWI interface 

* Author:   Peter Fleury <pfleury@gmx.ch>  http://jump.to/fleury 

* File:     $Id: twimaster.c,v 1.4 2015/01/17 12:16:05 peter Exp $ 

* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3 

* Target:   any AVR device with hardware TWI  

* Usage:    API compatible with I2C Software Library i2cmaster.h 

**************************************************************************/ 

#include <inttypes.h> 

#include <compat/twi.h> 

#include <i2cmaster.h> 

/* define CPU frequency in hz here if not defined in Makefile */ 

#ifndef F_CPU 

#define F_CPU 8000000UL 

#endif 

/* I2C clock in Hz */ 

#define SCL_CLOCK  100000L 

/************************************************************************* 

 Initialization of the I2C bus interface. Need to be called only once 

*************************************************************************/ 

void i2c_init(void) 

{ 

  /* initialize TWI clock: 100 kHz clock, TWPS = 0 => prescaler = 1 */ 

  TWSR = 0;                         /* no prescaler */ 

  TWBR = ((F_CPU/SCL_CLOCK)-16)/2;  /* must be > 10 for stable operation */ 

}/* i2c_init */ 

/*************************************************************************  

  Issues a start condition and sends address and transfer direction. 

  return 0 = device accessible, 1= failed to access device 

*************************************************************************/ 

unsigned char i2c_start(unsigned char address) 

{ 

    uint8_t   twst; 

 // send START condition 

 TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN); 

 // wait until transmission completed 

 while(!(TWCR & (1<<TWINT))); 

 // check value of TWI Status Register. Mask prescaler bits. 

 twst = TW_STATUS & 0xF8; 

 if ( (twst != TW_START) && (twst != TW_REP_START)) return 1; 

 // send device address 

 TWDR = address; 

 TWCR = (1<<TWINT) | (1<<TWEN); 

 // wail until transmission completed and ACK/NACK has been received 

 while(!(TWCR & (1<<TWINT))); 

 // check value of TWI Status Register. Mask prescaler bits. 

 twst = TW_STATUS & 0xF8; 

 if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1; 

 return 0; 

}/* i2c_start */ 
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/************************************************************************* 

 Issues a start condition and sends address and transfer direction. 

 If device is busy, use ack polling to wait until device is ready 

  

 Input:   address and transfer direction of I2C device 

*************************************************************************/ 

void i2c_start_wait(unsigned char address) 

{ 

    uint8_t   twst; 

 

 

    while ( 1 ) 

    { 

     // send START condition 

     TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN); 

     

     // wait until transmission completed 

     while(!(TWCR & (1<<TWINT))); 

     

     // check value of TWI Status Register. Mask prescaler bits. 

     twst = TW_STATUS & 0xF8; 

     if ( (twst != TW_START) && (twst != TW_REP_START)) continue; 

     

     // send device address 

     TWDR = address; 

     TWCR = (1<<TWINT) | (1<<TWEN); 

     

     // wail until transmission completed 

     while(!(TWCR & (1<<TWINT))); 

     

     // check value of TWI Status Register. Mask prescaler bits. 

     twst = TW_STATUS & 0xF8; 

     if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )  

     {          

         /* device busy, send stop condition to terminate write operation */ 

         TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO); 

          

         // wait until stop condition is executed and bus released 

         while(TWCR & (1<<TWSTO)); 

          

         continue; 

     } 

     //if( twst != TW_MT_SLA_ACK) return 1; 

     break; 

     } 

 

}/* i2c_start_wait */ 
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/************************************************************************* 

 Issues a repeated start condition and sends address and transfer direction  

 

 Input:   address and transfer direction of I2C device 

  

 Return:  0 device accessible 

          1 failed to access device 

*************************************************************************/ 

unsigned char i2c_rep_start(unsigned char address) 

{ 

    return i2c_start( address ); 

 

}/* i2c_rep_start */ 

 

 

/************************************************************************* 

 Terminates the data transfer and releases the I2C bus 

*************************************************************************/ 

void i2c_stop(void) 

{ 

    /* send stop condition */ 

 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO); 

  

 // wait until stop condition is executed and bus released 

 while(TWCR & (1<<TWSTO)); 

 

}/* i2c_stop */ 

 

 

/************************************************************************* 

  Send one byte to I2C device 

   

  Input:    byte to be transfered 

  Return:   0 write successful  

            1 write failed 

*************************************************************************/ 

unsigned char i2c_write( unsigned char data ) 

{  

    uint8_t   twst; 

     

 // send data to the previously addressed device 

 TWDR = data; 

 TWCR = (1<<TWINT) | (1<<TWEN); 

 

 // wait until transmission completed 

 while(!(TWCR & (1<<TWINT))); 

 

 // check value of TWI Status Register. Mask prescaler bits 

 twst = TW_STATUS & 0xF8; 

 if( twst != TW_MT_DATA_ACK) return 1; 

 return 0; 

 

}/* i2c_write */ 
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/************************************************************************* 

 Read one byte from the I2C device, request more data from device  

  

 Return:  byte read from I2C device 

*************************************************************************/ 

unsigned char i2c_readAck(void) 

{ 

 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA); 

 while(!(TWCR & (1<<TWINT)));     

    return TWDR; 

 

}/* i2c_readAck */ 

 

 

/************************************************************************* 

 Read one byte from the I2C device, read is followed by a stop condition  

  

 Return:  byte read from I2C device 

*************************************************************************/ 

unsigned char i2c_readNak(void) 

{ 

 TWCR = (1<<TWINT) | (1<<TWEN); 

 while(!(TWCR & (1<<TWINT)));  

    return TWDR; 

 

}/* i2c_readNak */ 
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Frequency.c Header file 

#define NUM_FREQUENCIES 100 // Number of frequencies available to set for testing 

 

// Defining a variable type that has two fields 

struct Frequencies { 

 unsigned char terminal_value; 

 unsigned char set_value; 

 double adc_delay;  

}; 

 

// Initializes array of struct Frequencies 

struct Frequencies frequency_table[NUM_FREQUENCIES]; 

 

// Order is important 

unsigned char resistance_hex[NUM_FREQUENCIES] = { 

 0xFF, 0x3F, 0x24, 0x19, 0x13, 0x0F, 0x0D, 0x0B, 0x0A, 0x09,  

 0x08, 0x07, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x04, 0x04,  

 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 

 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0xFF, 0xC4, 0x9F,  

 0x86, 0x74, 0x66, 0x5B, 0x52, 0x4B, 0x45, 0x3F, 0x3B, 0x37,  

 0x34, 0x31, 0x2E, 0x2C, 0x2A, 0x29, 0x27, 0x26, 0x24, 0x23,  

 0x03, 0x20, 0x1F, 0x1E, 0x1D, 0x1C, 0x1B, 0x1A, 0x19, 0x15,  

 0x13, 0x0F, 0x0D, 0x0B, 0x0A, 0x09, 0x08, 0x07, 0x06, 0x06,  

 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03,  

 0x03, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02 

};  

 

// Order is important 

double delay[NUM_FREQUENCIES] = { 

 0.390, 0.098, 0.056, 0.039, 0.030, 0.024, 0.020, 0.018, 0.016,  

 0.014, 0.013, 0.011, 0.010, 0.090, 0.009, 0.008, 0.008, 0.008,  

 0.007, 0.007, 0.007, 0.006, 0.006, 0.006, 0.006, 0.005, 0.005,  

 0.005, 0.005, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.001,  

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

 0, 0, 0, 0, 0, 0, 0, 0 

};  

 

// Assigns array values to specific structs 

void init_frequency_table(void) { 

 for(unsigned char i = 0; i <= (NUM_FREQUENCIES-1); i++) { 

  frequency_table[i].terminal_value = (i+1); 

  frequency_table[i].set_value  = resistance_hex[i];  

  frequency_table[i].adc_delay  = delay[i];  

 } 

} 
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USART.c Header 

#define BAUDRATE 51//ATMEGA1284P data sheet suggests this value to produce ~9600 bps baud 

rate 

 

void USART_init( void ) { 

 // USART initialization 

 // Communication parameters: 8 data bits, 1 stop bit, no parity checking 

 // USART Transmitter: ON 

 // USART Receiver: ON 

 // USART Mode: Asynchronous 

 // USART Baud Rate: 9600 bps 

 UBRR0 = BAUDRATE; // Sets baud rate 

 UCSR0B = (1 << RXEN0) | (1 << TXEN0);  // Enable transmitter and receiver 

 UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);  // Enables 1 stop bit mode 

} 

 

void USART_transmit( char data ) { 

 // Wait for empty transmit buffer 

 while( !( UCSR0A & (1 << UDRE0)) ); 

 // Put data into buffer, sends the data 

 UDR0 = data;  

} 

 

void USART_transmit_newline( void ) { 

 USART_transmit(0x0D); 

 USART_transmit(0x0A); 

} 

 

void USART_transmit_string( char string[] ) { 

 unsigned char i = 0;  

 while(string[i] != 0x00) { 

  USART_transmit(string[i]);  

  i++;  

 } 

 USART_transmit_newline();  

} 

 

unsigned char USART_receive( void ) { 

 // Wait for data to be received 

 while ( !(UCSR0A & (1 << RXC0)) ); 

 // Get and return received data from buffer 

 return UDR0;  

} 

 


