
JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

1 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

EE175A/B Final Report

Impedance-based Battery Management System

EE 175AB Final Report

Department of Electrical Engineering, UC Riverside

Project Team

Member(s)
Jack Gatfield, Jack Gu, Joseph Gozum

Date Submitted 06/10/2019

Section

Professor

Professor Roman Chomko

Revision 2.0

URL of Project

Wiki/Webpage

Video Demonstration: https://youtu.be/oQQVyO3CPuU

Permanent

Emails of all

team members

jackgu70@gmail.com

joseph.f.gozum@gmail.com

jack.gatfield@comcast.net

https://youtu.be/oQQVyO3CPuU
mailto:JackGu70@Gmail.com
mailto:JackGu70@Gmail.com
mailto:JackGu70@Gmail.com

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

2 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Revisions

Version Description of Version Author(s) Date

Completed

Approval

0.1 First draft - Not to be released Jack Gatfield,

Joseph Gozum,

Jack Gu

03/01/2019

0.5 Second draft - To be submitted for comment-

ing and notes

Jack Gatfield,

Joseph Gozum,

Jack Gu

03/07/2019

0.8 Final draft– edited with commenting and

notes from previous version

Jack Gatfield,

Joseph Gozum,

Jack Gu

03/16/2019

1.0 Final version – To be submitted for final

grading

Jack Gatfield,

Joseph Gozum,

Jack Gu

03/18/2019

2.0 Revised version – Revised through ENGR

181W

Jack Gatfield,

Joseph Gozum,

Jack Gu

06/10/2019

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

3 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Table of Contents

REVISIONS ...2

TABLE OF CONTENTS ..3

1 EXECUTIVE SUMMARY ...7

2 INTRODUCTION ...8

2.1 DESIGN OBJECTIVES AND SYSTEM OVERVIEW ..8

2.2 BACKGROUNDS AND PRIOR ART ...9

2.3 DEVELOPMENT ENVIRONMENT AND TOOLS ..11

2.4 RELATED DOCUMENTS AND SUPPORTING MATERIALS..12

2.5 DEFINITIONS AND ACRONYMS ..12

3 DESIGN CONSIDERATIONS ..13

3.1 ASSUMPTIONS ...13

3.2 REALISTIC CONSTRAINTS ..14

3.2.1 Voltage Supply .. 14

3.2.2 Microcontroller Processor and Memory Speed ... 14

3.2.3 Battery Safety ... 14

3.2.4 Ability to Capture Induced Battery Voltage Response ... 14

3.3 SYSTEM ENVIRONMENT AND EXTERNAL FEATURES ...14

3.3.1 Power.. 14

3.3.2 User Interface ... 14

3.3.3 Computer to Microcontroller interfacing ... 14

3.4 INDUSTRY STANDARDS ...15

3.5 KNOWLEDGE AND SKILLS ...15

3.6 BUDGET AND COST ANALYSIS ..17

3.7 SAFETY ...18

3.8 PERFORMANCE, SECURITY, QUALITY, RELIABILITY, AESTHETICS ETC.18

3.9 DOCUMENTATION ...19

3.10 RISKS AND VOLATILE AREAS ..19

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

4 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4 EXPERIMENT DESIGN AND FEASIBILITY STUDY ..20

4.1 EXPERIMENT DESIGN ..20

4.1.1 Current shaping viability experiment ... 20

4.1.2 Floating Node experiment .. 22

4.1.3 Amplifier accuracy test ... 24

4.1.4 Biasing Circuit Output Test .. 26

4.1.5 Frequency Sweep Test .. 28

4.1.6 Initial Data Reading Experiment .. 29

4.1.7 MATLAB Python Cross-platform Experiment .. 30

4.1.8 Current Maximization Experiment ... 31

4.1.9 Arduino ADC Testing ... 33

4.1.10 Arduino to MATLAB Data Acquisition and Processing Experiment 36

4.1.11 Arduino IDE and MATLAB Tool Box Experiment ... 38

4.1.12 MATLAB Data Processing Code Test .. 39

4.1.13 PCB Development .. 40

4.2 EXPERIMENT RESULTS, DATA ANALYSIS AND FEASIBILITY43

5 ARCHITECTURE AND HIGH-LEVEL DESIGN ..44

5.1 SYSTEM ARCHITECTURE AND DESIGN ...44

5.2 HARDWARE ARCHITECTURE ...45

5.3 SOFTWARE ARCHITECTURE ...48

5.4 RATIONALE AND ALTERNATIVES ..51

6 DATA STRUCTURES ...52

6.1 INTERNAL SOFTWARE DATA STRUCTURE ...52

6.2 GLOBAL DATA STRUCTURE ...52

6.3 TEMPORARY DATA STRUCTURE ...52

6.4 DATABASE DESCRIPTIONS ...52

7 LOW LEVEL DESIGN ...53

7.1 THE CURRENT INJECTION CIRCUIT ...53

7.2 PROCESSING NARRATIVE FOR CURRENT INJECTION CIRCUIT54

7.2.1 Current Injection Circuit Interface Description ... 55

7.2.2 Current Injection Circuit processing details .. 55

7.3 THE FUNCTION GENERATOR BIASING CIRCUIT ..56

7.3.1 Processing narrative for the Function Generator Biasing Circuit 57

7.3.2 Function Generator Biasing Circuit Interface Description 57

7.3.3 Function Generator Biasing Circuit Processing Details ... 57

7.4 THE DIFFERENTIAL PROBES ..58

7.4.1 Processing narrative for the Differential Probes ... 59

7.4.2 Differential Probes Interface Description .. 59

7.4.3 Differential Probes Processing Details .. 59

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

5 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.5 THE FUNCTION GENERATOR CHIP CIRCUIT ...60

7.5.1 Processing narrative for the Function Generator Chip Circuit 61

7.5.2 Function Generator Chip Circuit Interface Description .. 62

7.5.3 Function Generator Chip Processing Details .. 62

7.6 DIGITAL POTENTIOMETER AND I2C ..63

7.6.1 Processing Narrative for I2C Communication ... 63

7.6.2 I2C Interface Communication Description .. 64

7.6.3 I2C Processing Details ... 65

7.7 USART ...66

7.7.1 Processing Narrative for USART Communication ... 66

7.7.2 USART Interface Communication Description .. 66

7.7.3 USART Processing Details ... 67

7.8 DATA ACQUISITION...68

7.8.1 Processing Narrative for Data Acquisition .. 68

7.8.2 Data Acquisition Interface Description .. 68

7.8.3 Data Acquisition Details .. 68

7.9 MATLAB ...69

7.9.1 Processing Narrative for Data Processing .. 69

7.9.2 Data Processing Interface Description .. 69

7.9.3 Data Processing Details ... 69

7.9.4 Data Processing Important Code Snippets .. 70

7.10 THE INSUFFICIENT CURRENT PROBLEM ..71

7.10.1 Solving the Insufficient Current Problem ... 71

7.11 HOW/WHERE DO WE PROCESS THE DATA THAT WE COLLECT PROBLEM71

7.11.1 Use Python/MATLAB to do Conversions and Processes the Data 71

7.12 THE INJECTED CURRENT CUTOFF PROBLEM ...71

7.12.1 Solving the Injected Current Cutoff Problem ... 72

7.13 THE POWER DISSIPATION AND BATTERY SAFETY ISSUE72

7.13.1 Solving the Power Dissipation and Battery Safety Issue .. 72

7.14 THE FREQUENCY RANGE GENERATION PROBLEM...72

7.14.1 Solving the Frequency Range Generation Problem ... 73

8 USER INTERFACE DESIGN ..74

8.1 APPLICATION CONTROL ..74

8.2 USER INTERFACE SCREENS ...75

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

6 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9 TEST PLAN ..78

9.1 TEST DESIGN ...78

9.1.1 Testing for Floating Node Voltages ... 78

9.1.2 Testing the Injected Current Circuit’s Output .. 79

9.1.3 Testing the Output of the Function Generator Circuit ... 80

9.1.4 Testing the Accuracy of the Differential Probes .. 81

9.1.5 Testing the Data Extraction Feature .. 82

9.1.6 Testing the Output of the Biasing Circuit ... 83

9.2 BUG TRACKING ...84

9.3 QUALITY CONTROL ...85

9.4 IDENTIFICATION OF CRITICAL COMPONENTS ..86

9.5 ITEMS NOT TESTED BY THE EXPERIMENTS ..86

10 TEST REPORT ...87

10.1 FLOATING NODE VOLTAGE ...87

10.2 TESTING THE INJECTED CURRENT CIRCUIT’S OUTPUT ..88

10.3 TESTING THE OUTPUT OF THE FUNCTION GENERATOR CIRCUIT............................89

10.4 TESTING THE ACCURACY OF THE DIFFERENTIAL PROBES90

10.5 TESTING THE DATA EXTRACTION FEATURE ..90

10.6 TESTING THE OUTPUT OF THE BIASING CIRCUIT ...90

11 CONCLUSION AND FUTURE WORK ...91

11.1 CONCLUSION ...91

11.2 FUTURE WORK ..93

11.3 ACKNOWLEDGEMENT ..94

12 REFERENCES ...95

13 APPENDICES ..96

13.1 APPENDIX A: PARTS LIST ..96

13.2 APPENDIX B: EQUIPMENT LIST ...97

13.3 APPENDIX C: SOFTWARE LIST ...98

13.4 APPENDIX E: USER’S MANUAL ...99

13.5 APPENDIX F: FREQUENCY LOOKUP TABLE (DIGITAL)100

13.6 APPENDIX G: FREQUENCY LOOKUP TABLE (ANALOG)103

13.7 APPENDIX H: MATLAB CODE/DATA FORMATTING CODE105

13.8 APPENDIX I: MICROCONTROLLER CODE ...115

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

7 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

1 Executive Summary

Lithium-Ion batteries are becoming increasingly important in the automotive field, specifically

electric vehicles. Lithium-Ion batteries come with concerns such as continued health and safety after pro-

duction. One of the most prevalent problems is cell mismatch, which is batteries within a pack having dif-

ferent voltage levels. If all cells do not have similar voltages, they may become damaged. Current battery

management systems (BMS) cannot easily determine a cell mismatch. The impedance-based battery man-

agement system (IBMS) that was designed in this project can determine cell mismatch without the time

intensive current processes. The IBMS also requires less circuitry to dissipate heat and power compared

to current BMS.

 Along with decreasing testing time, this project had several other goals. The following are goals

of the project:

• Lowering overall equipment size

• Lowering testing time

• Lowering power consumption

• Increasing overall safety

• Increasing accuracy in the impedance calculation

• Increasing cell mismatch detection accuracy

Many of these goals are in response to inefficiencies found in current BMS.

 In terms of design objectives, the most important was to maximize the voltage response of battery

while maintaining safety. The Lithium-Ion battery could overheat if exposed to large amounts of current.

In order to keep the battery at safe temperatures, the IBMS was limited to injecting 20 mA of current.

There is also a high wattage resistor used for excess heat dissipation. Some key features of this project

are:

• Safe current injection

• Voltage data collection

• Singular and sweep frequency testing

• Impedance calculations

After testing, the IBMS produced results that followed trends similar to those found in the John

Hopkins article [3]. Further testing is still needed to fully verify the accuracy of the impedance calcula-

tions.

The IBMS of this project was able to calculate the impedance of a lithium-ion battery. It collected

the voltage and current of the battery safely and was able to reconstruct its sinusoidal waveform for the

impedance calculation. The system was able to calculate impedance at multiple frequencies, either

through a set level or a frequency sweep. This allowed for health trends to be graphed and observed.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

8 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

2 Introduction

2.1 Design Objectives and System Overview

Lithium-ion batteries play a critical role in industry, powering machinery, tools, and electric vehi-

cles. Over time and disuse cell mismatch occurs which is when individual lithium-ion batteries have dif-

ferent voltage levels than neighboring cells. Continued use of mismatched cells leads to over-charging/-

discharging which affects the batteries overall health. To counteract this problem, battery management

systems (BMS) are designed to monitor batteries to offset these varying voltage levels.

Current BMS only measure a battery’s overall voltage and surface temperature. These are poor

indicators of the battery’s lifespan and overall condition and do not address the inherent mismatch of

cells. These established systems can be improved by collecting the battery’s impedance at multiple fre-

quencies. An impedance-based BMS (IBMS) can determine battery conditions more accurately and in-

depth than the conventional method.

This project is a BMS that uses impedance instead of surface temperature and voltage to indicate

the condition of a battery. Impedance at various frequencies follow patterns that reveal internal issues

such as cell mismatch and overcharging. Finding hidden issues with this system before an accident occurs

increases the efficiency and safety of the batteries.

The project is divided into several subsystems: function generation, current generation, data col-

lection, and data processing. Function generation modifies and generates the frequency of the injected

current. The current injection subsystem injects the modified current into the tested battery to induce and

measure a voltage response. During data processing, the voltage response is processed with the voltage

response across a resistive load. From these two measurements, impedance is calculated for the specific

frequency. The process is repeated for different frequencies and then processed for trend analysis and

looked at overall. Users can either input specific frequencies or use a general frequency sweep. The sys-

tem takes lithium-ion batteries as inputs and outputs impedance measurements.

Using concepts from signal processing and circuit design, the project is designed to have the final

technical specifications, completed by the following team member:

• Jack Gatfield:

o Easy to follow circuitry

o Data processing through MATLAB

o Safe power dissipation and overall safety

o Frequency range for overall analysis: f ∈ [1 Hz, 1 kHz]

o Short overall testing time: Testing Time < 45 minutes

o Accuracy within 10% to experimental research data

o Semi-low cost: Cost < $150

• Jack Gu:

o Safe but effective injected current through the battery: Ic ∈ [1 mA, 20 mA]

o Flexibility in testing circuit allowing for modification in future tests

o Safe power dissipation and overall safety

o Frequency range for overall analysis: f ∈ [1 Hz, 1 kHz]

o Accuracy within 10% to experimental research data

o Semi-low cost: Cost < $150

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

9 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

• Joseph Gozum:

o Cross-platform data movement and processing

o Accurate data collection to the third decimal place

o Short overall testing time Testing Time < 45 minutes

o Accuracy within 10% to experimental research data

o Semi-low cost: Cost < $150

With the completion of the overall project, this device and future iterations will monitor the con-

ditions of lithium-ion batteries to check for underlying issues such as overcharging and cell mismatch.

2.2 Backgrounds and Prior Art

Devices that use multi-cell Lithium-ion battery packs are designed for matched cells. Matched

cells are cells that have the same capacitance, charge and discharge rates, and temperature variations.

Matched cells ensure safe performance and efficiency. As battery packs age, little attention is given to

verify their matched status. Using a mismatched cell will cause a cascading effect of issues including

large heat variation, over-charging and discharging, and most notably diminishing power storage effi-

ciency.

Current battery monitoring systems focus on measuring cell voltage and temperature. These

measurements do not monitor cell mismatch, chemical and material health. Commonly available devices

monitor temperature and voltage during a long charging/discharging cycle. These test cycles only ensure

that cells do not exceed preset voltage and temperature limits. Examples of available BMS are shown in

figure 2.2a through 2.2c.

Impedance measurement of a battery is not a new concept. There are experimental BMS that use

impedance to monitor the health of a battery. These devices typically only use one frequency. One fre-

quency does not allow for trends or flexible testing.

The following devices are references to commercially available BMS:

• At the research lab of Professor Cengiz Ozkan of the University of California, Riverside, a Bio-

Logic Science Instruments Battery Cycler, shown in figure 2.2a, is used to determine cell mis-

match.

Figure 2.2a: Professor Ozkan’s research device

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

10 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

• The University of California, Riverside: College of Engineering – Center for Environmental

Research and Technology (CE-CERT) uses the NHR Battery Pack Test System – 9200 series,

shown in figure 2.2b. The large size is a safety requirement to allow for proper energy dissi-

pation.

Figure 2.2b: CE-CERT monitoring device (NHR Battery Pack Test System – 9200 series)

• Wireless battery monitor, shown in figure 2.2c, are available for hobby battery testing systems.

They are less precise as the other examples but they provide similar information about the

tested batteries with a shorter test cycle.

Figure 2.2c: Wireless battery monitoring systems such as these are able to be purchased and used by

almost anyone, but still fails to address the aforementioned issues

The advantages of this projects design are time, size, and power consumption compared to the available

products. This project does not require the battery to go through a full-cycle of charging and discharging

which reduces power usage, time and circuitry size.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

11 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

2.3 Development Environment and Tools

The following software and hardware tools are used:

• Hardware

o Oscilloscope (Techtronics TDS340)

o Multimeter (FLUKE45)

o Function Generator (HP 33120A)

o Power Supply (HPE3630A)

o Raspberry Pi

o Arduino UNO

o Arduino Mega 2560

o Atmega1284P

o Breadboards

o Through Boards

o Solder station, solder suction pens, solder tip cleaner

o Circuit parts

▪ LF353N OP-AMP

▪ Q2N2222 BJT

▪ Resistors

▪ Capacitors

▪ 5 V, 10 V voltage regulators

▪ MAX1044 Voltage Converter

▪ Barrel Jack

▪ 18650 Battery holders

▪ XR2206 function generator

▪ AD5241 digital potentiometer

▪ FTDI TTL-232 Serial Communication Cable

• Software

o MATLAB

o Atmel Studio 7 Integrated Development Platform

o Arduino IDE

o Python 3.7.2

o Eagle PCB Design Software

o Visual Studios 2013

o Cloud9 Development Environment

o RealTerm: Serial/TCP

o PuTTY Terminal Emulator

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

12 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

2.4 Related Documents and Supporting Materials

[1] Atmel Corporation, “8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash”,

ATMEGA1284P Datasheet, Nov. 2009

[2] “Getting Started with Atmel Studio 7.” Microchip Technology, Chandler, AZ, Jan-2018.

[3] J. Alveredo, “CERT C Programming Language Secure Coding Standard.” Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania, 10-Sep-2007.

[4] “UM10204 I2C-bus specification and user manual.” NXP Semiconductors, Eindhoven, Netherlands,

Apr-2014.

[5] “USART and Asynchronous Communication.” Oregon State University, Corvallis, Oregon, Jul-2010.

2.5 Definitions and Acronyms

• BMS: Battery Monitoring System.

• IBMS: Impedance Based battery Monitoring System

• CE-CERT: College of Engineering - Center for Research & Technology

• OP-AMP: Operational amplifier.

• Digi-Pot: Digital potentiometer, an adjustable resistor set digitally.

• ADC: Analog-to-Digital Converter

• USART: Universal Synchronous Asynchronous Receiver Transmitter

• I2C: Inter-Integrated Circuit

• RS-232: Recommended Standard 232

• CSV: Comma-Separated Value

• BJT: Bipolar Junction Transistor.

• SAR: Successive-Approximation Register

• PCB: Printed Circuit Board

• SMT: Surface Mount Technology

• THP: Through Hole Part

• TBC: Through Board Circuit

• TXD: Transmit Data

• RXD: Receive Data

• DMA: Direct Memory Access

• IC: Integrated Circuit

• DC: Direct Current

• AC: Alternating Current

• FTDI: Future Technology Devices International

• TTL: Transistor Transistor Logic

• GUI: Graphical User Interface

• CPU: Central Processing Unit

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

13 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

3 Design Considerations

The designs constraints of this project are size, signal-type, current limitation, high-power rated

load, accuracy, precision, data transfer speeds, and safe power dissipation.

• Size is considered to address the issue of currently available products which are large and not

portable.

• Signal-type is limited to sinusoidal and square waveforms because both provide data with mini-

mal computation towards impedance.

• Current limitation is related to the current injected to the battery. If too much current is injected to

the battery it will heat up the battery and affect the internal chemicals.

• High-power rating loads are needed to dissipate produced heat.

• Accuracy is needed in all components that do signal readings. The accuracy of the differential

probes and the ADC on the microcontroller are the biggest concerns. The data this project collects

is in the millivolt range of voltage and any inaccuracy affects the results.

• Precision is considered in the same components as accuracy. Any loss of precision will show up

as errors in the results.

• Data transfer speeds affect the overall testing time that this project is trying to minimize. The

transfer speeds between the microcontroller and computer are set at 9600 bits per second. This

speed allows for fast data transfer without loss in data.

• Safe power dissipation is related to high-power rating load. In order to safely dissipate power, the

load must be able to handle it.

In order to design this system, the following points are taken into considerations:

• Small form factor function generator to produce sinusoidal and square waveform voltages

• Independent biasing circuit (DC Offset) for sinusoidal waveform

• Voltage divider for square waveform

• Limits on the current through the battery

• Low resistance but high-power rating load

• Reading the small voltage response across the battery after current injection

• Required to sweep through a large range from 1 Hz to 1 KHz

• Transfer the data collected from the microcontroller to the computer

• Safe power dissipation in the test circuit

• Maintain an input voltage for the current injection circuit

• Accuracy in reading of differential probes

• Proper and clean circuit implementation

3.1 Assumptions

The system this manual is based on is a prototype. The following are assumed:

• The batteries used are 18650 Lithium-Ion batteries.

• The data provided by the John Hopkins experiment give an accurate reflection on the condition of

the battery.

• The BMS is given time to complete the full frequency sweep.

• The batteries are assumed to remain safely connected to the system until testing is completed.

• The testing is assumed to be conducted at room temperature.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

14 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

3.2 Realistic Constraints

3.2.1 Voltage Supply

Safely supplying voltage is a circuit design and implementation constraint. Voltage needed to be

supplied in environments with a simple wall outlet. This required the implementation of a barrel jack and

DC power adapter to provide voltage to the system.

3.2.2 Microcontroller Processor and Memory Speed

Microcontrollers operate on a set processor speed. This speed had to be taken into account for

developing the data acquisition code to ensure proper functionality. This speed also had to be taken into

account when deriving the data sampling frequency of the ADC.

3.2.3 Battery Safety

Batteries are very volatile and unsafe if improperly handled. A safe testing environment required

that less than 20 mA could be injected into the battery. The load resistor must dissipate the power generated.

3.2.4 Ability to Capture Induced Battery Voltage Response

Batteries are volatile and unsafe. The circuit is designed to ensure safety when testing batteries.

3.3 System Environment and External Features

3.3.1 Power

The Printed Circuit Board (PCB), Through Board Circuit (TBC), and the breadboard version of the

circuit require external power. The PCB and the TBC are powered through a 12 V DC power adapter. The

bread board circuit is powered through desktop power supplies.

3.3.2 User Interface

The user interface uses the PuTTY Terminal, Python Command Window, and MATLAB. The

PuTTY Terminal establishes communication between the Microcontroller and the user’s computer. Python

formats the gathered data. MATLAB process the data generated and presents the results to the user.

3.3.3 Computer to Microcontroller interfacing

PuTTY and RealTerm are used as terminal interfaces for communication between the user com-

puter and the microprocessor.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

15 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

3.4 Industry Standards

[1] J. Alveredo, “CERT C Programming Language Secure Coding Standard.” Carnegie Mellon Univer-

sity, Pittsburgh, Pennsylvania, 10-Sep-2007.

[2] “RS232 Interface Module.” Solartron metrology, Bognor Regis, England, Jun-2010.

[3] “UM10204 I2C-bus specification and user manual.” NXP Semiconductors, Eindhoven, Netherlands,

Apr-2014.

[4] ISO/IEC 1475: UART. Rev. 2.40-28 April 2015

3.5 Knowledge and Skills

Joseph Gozum:

• Previously learned:

o EE/CS120B - Intermediate Embedded Systems

▪ Embedded system programming and peripheral interfacing

o EE128 - Data Acquisition, Instrumentation, and Process Control

▪ Embedded system programming, data acquisition, and communication

o EE01A/B

▪ Circuit design and circuit simulation

o EE100A/B - Electronic Circuits

▪ Circuit design

o PuTTY Terminal Emulator

▪ An interface to receive and interact with connected devices using different com-

munication methods with a terminal-like design

• Learned:

o Serial communication methods and standards

▪ Learned how to properly implement the different methods

o Digital logic for controlling peripherals

o Python for data manipulation and automation

▪ Learned about the ability of Python and supporting libraries

Jack Gu:

• Previously Learned:

o EE100A/B: Electronic Circuits

▪ Circuit design for the hardware components of the project

▪ Understanding of tradeoffs in performance for different designs

o EE123: Power Electronics

▪ Power flow and consumption in the hardware components of the project

▪ Use of LTSPICE for various circuit simulations

o MATLAB (EE110A/B, EE105, EE141, and some self-taught)

▪ Design algorithms in developing the phase calculating algorithm of our project

▪ Debug MATLAB programs that are the main processing unit of our project

o EE001A/B

▪ Circuit design, implementation, and testing

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

16 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

• Learned:

o PCB Soldering

▪ How to safely solder components onto a test board and PCB board

o LabVIEW

▪ How to run LabVIEW with MATLAB for implementation of GUI in the future

▪ Handle user interface and user inputs

Jack Gatfield:

• Previously learned:

o EE/CS120B: Intermediate Embedded Systems

▪ Embedded system program, setup, and interfacing

o EE128: Data Acquisition, Instrumentation, and Process Control

▪ Embedded system programing, integration and data acquisition, and code optimi-

zation

o EE100A/B: Electronic Circuits

▪ Circuit design, BJT operation, proper lab and testing procedure of BJT circuits

o EE123: Power Electronics

▪ Circuit design, power flow and consumption, using LTspice for circuit simulation

• Learned:

o Python programming

▪ Needed to developed code to handle data formatting from the serial communica-

tion to the MATLAB data read; eventually taken over by Joseph Gozum due to

his larger knowledge base of Python

o MATLAB (EE20, EE110A/B, EE105, EE141, and self-taught)

▪ Data processing

o PCB design and manufacturing

▪ Learned how to use Eagle PCB Design Software to implement a PCB of the cir-

cuit. This required learning how to use the program, learning about best practices

for PCB design, developing the full circuit to implement, and learning how to

properly send it to printing.

o AutoCAD 2019 Design

▪ Learned how to develop a 3D model to be used as a case for the future PCB. This

required learning the program and then properly implementing the box to the

needed dimensions.

o PuTTY Terminal Emulator

▪ Learned a basic understanding of how the putty terminal works in order to obtain

data from the circuit. This task was left mostly to Joseph Gozum due to his prior

knowledge of the program.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

17 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

3.6 Budget and Cost Analysis

The cost breakdown in Table 1.6.1 shows the cost of the final system without the PCB. With the

parts below, and the needed PCB, one can fully implement the system.

Parts in final circuit design

Part QTY. Cost per unit

12V DC Power Adapter 1 $8.95

Barrel Jack 1 $1.50

0.33uF non polarized capacitor 2 $1.50

0.1uF non polarized capacitor 4 $1.30

5V voltage regulator [L7805C] 1 $0.75

10V voltage regulator [BA17810] 1 $0.84

Voltage inverter [Max1044CPA+] 1 $3.40

Potentiometer (Digital [AD5242]) 1 Digital: $2.68

Function generating chip [XR2206] 1 $7.95

2 level dip switches 2 $1.20

NPN BJT 1 $3.00

18650 battery holders [2n2222a] 1 $1.95

18650 battery Test Batch $5.00

Op amp [LF353] 1 $1.00

Microcontroller [Atmega1284p] 1 $5.00

Programmer and cable 1 $75.00

Program header [IEEE UCR programmer header] 1 $1.00

Serial communication cable [FTDI Serial TTL-232 USB Cable] 1 $17.95

Resistors (1Ω to 20kΩ) 25 $1.20 to $3.00

Table 1.6.1

The final cost of the project is low when compared to current available BMS. The main cost of

this design is the PCB. PCB printing and implementation can be minimized if the system is put into mass

production, or a cheaper printing establishment is found.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

18 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

3.7 Safety

This project has several safety hazards in the final prototype. The first concern is the danger from

directly injecting current into a lithium-ion battery. If the amount of current entering a battery exceeds a

certain threshold (20 mA), the battery could react negatively and potentially melt or even explode. Cur-

rent entering the battery is controlled so that the current magnitude is large enough to induce a voltage

response while low enough to not damage the battery. Transient responses (Unwanted spikes in current) is

also addressed through switches and lowering the frequency sweep step size.

The second concern is the issue of heat buildup when the system is running. Lithium-ion batteries

react negatively to constant exposure of heat. This constant heat generation stems from the inherent long

testing time of our system as well as the need for safe power dissipation after the current passes through

the battery. Methods implemented to address heat issue include heat sinks, high power rated components,

and a power regulating network. The PCB implementation reduces the possibility of wire meltdown as

well as allowing more airflow into the circuit, reducing heat buildup. The power regulating network al-

lows for the system to run for long periods of time without extensive heat buildup from the power

sources. The high-power rating components reduce the risk of component meltdowns as well as allow en-

ergy to be dissipated efficiency.

The final concern is the issue of unwanted transient responses. Transient responses in the system

are defined as sudden spikes in voltage or current. Transient responses appear in the system when the bat-

tery is either connected or removed from the system and when the switch in frequency values is too large

(> 50 Hz). Stopping transient responses was done in two ways: Reduction of frequency step sizes and re-

moval of the battery from the circuit when switching frequencies.

3.8 Performance, Security, Quality, Reliability, Aesthetics etc.

This project requires precision and accurate reading of voltage signals in the millivolt range. The

computation for impedance is used in this project is based off these readings. The components of main

concern for performance are the differential probes and the ADC.

Next is security concerns. This product does not have any security and it does not require it in order

to function. This project does have quality standards that it must meet.

The device must be able to product quality results that measure up to widely available products. This

is related to its ability to gather precise and accurate data which is then used determine cell health and

mismatch. The IBMS also has reliability standards.

This IBMS must be able to support or replace existing products. Therefore, its reliability must be

greater than or equal to those same products. Another important concern for this project is its size.

The IBMS must have a small size and silent aesthetic to address the opposite seen in widely available

products.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

19 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Finally, there is an importance on control for this project. The project involves working with analog

signals but the actual reading is digital. Components that work with the analog signal can also be digitized

to reduce error in using analog components. Analog potentiometers and switches that would be used can

be replaced with digital potentiometers and switches.

3.9 Documentation

To maintain and generate documentation for the senior design work, a Google Drive folder was

made that contains all technical specifications and instructions. During meetings and experiments, all

events were logged. The file would be titled and placed with an appropriate name and in the proper sub-

folder. For handwritten notes dedicated notebooks were used and later typed or scanned. Hand written

notes were few so most of the documentation was typed and stored directly through documents on the

Google Drive.

3.10 Risks and Volatile Areas

This project has a battery that is being actively injected with current. This process can be very

dangerous if handled incorrectly. To help mitigate the safety risk for this system, precautions were taken

with current levels and power dissipation. The current was kept below 20 mA and the load resistor has a

high-power rating. In future iterations a way to disconnect the battery automatically would be a further

step for system safety.

Another volatile area in the design is the BJT that converts the voltage signal to a current signal.

If the frequency of the voltage signal is changed rapidly in magnitude the BJT will be damaged and cause

a current surge. To mitigate this, a slow manual frequency stepping progression was used for data collec-

tion. In the future an automatic frequency sweep using a digital potentiometer controlled by the microcon-

troller will be used.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

20 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4 Experiment Design and Feasibility Study

4.1 Experiment Design

4.1.1 Current shaping viability experiment

Objective: Test whether it is possible to send a sinusoidal current through the 2N2222 transistor and

check if the sinusoidal waveform is --intact when used with a test battery.

Setup: The following setup was used to test the shape of the current under various frequencies.

Figure 4.1.1a: Physical setup of the test circuit for the experiment

Figure 4.1.1b: Test schematic for the experiment in LTspice

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

21 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Procedure:

1. Connect the function generator to the test circuit (Black wire in Figure 4.1.1a)

2. Connect the common ground to the circuit (Refer to Figure 4.1.1b).

3. Connect the negative terminal of the test battery and indicate the section where you would con-

nect the positive terminal.

4. In those two terminals listed in step 3, connect the oscilloscope probes across the same terminals.

5. Turn on the function generator and slowly increment the frequency while retaining the voltage

input with the input: 2 + sin(𝜔𝑡) 𝑉

6. Record data on the oscilloscope

7. Repeat for different frequencies until satisfied.

Expected Result: The signal across the battery is expected to be noisy but still maintain a sinusoidal

shape.

Result: The following was obtained:

Figure 4.1.1c: Current flowing the battery (top) and the input voltage (bottom) at 100 Hz.

Figure 4.1.1d: Current flowing the battery (top) and the input voltage (bottom) at 1000 Hz

Looking at the figure 4.1.1c and 4.1.1d, the signal retains a sinusoidal waveform in the battery regardless

of frequency.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

22 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.2 Floating Node experiment

Objective: Examine the voltage of the input and output nodes for the current injection circuits BJT and

check for floating points.

Setup: The following setup was used to check for floating nodes in our current injection module:

Figure 4.1.2a: Physical setup of our floating node experiment

Procedure:

1. Connect appropriate ground terminals

2. Connect differential voltage probes (Figure 4.1.2a blue wire) at the collector of the transistor and

ground

3. Connect a power supply (Figure 4.1.2a black wire) which should be a DC input voltage.

[0 V, 5 V]

4. Connect the battery in series in between the resistive load and BJT (Figure 4.1.2a yellow wire)

5. Record the voltage at the collector for all DC values in the sweep.

Expected Result: Simulations shown below suggest the possibility of a floating node voltage.

Figure 4.1.2b: LTspice schematic for simulations of a floating node

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

23 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 4.1.2c: Output for the collector voltage and current

A floating node voltage is expected at the collector component of the transistor.

Result: The graph below displays all induced responses from input voltages ranging from 0 to 3.5 V:

Figure 4.1.2d: Output at the collector for both voltage and currents

There appears to be no floating voltage nodes when looking at Figure 4.1.2d.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

24 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.3 Amplifier accuracy test

Objective: Test the accuracy and precision of the differential amplifier module when applying various

DC signals as inputs.

Setup: The following setup was implemented to test the functionality and accuracy of the amplifier:

Figure 4.1.3a: LTspice schematic for simulation of the operational amplifier

Figure 4.1.3b: Physical implementation diagram of the differential amplifier

Procedure:

1. Construct the circuit and connect all ground terminals.

2. Apply the appropriate power supplies and input voltages to the circuit.

3. Record the results of the output and test various DC values to be differentiated.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

25 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Expected Result: Simulations suggested accurate calculations of the amplifier. Slight errors were still

expected.

Figure 4.1.3c: Initial Test for 𝑉2 = 0.05 𝑉; 𝑉1 = 0.03 𝑉; 𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 1 𝐾Ω;

When looking at the LTspice simulations, an output was expected that follows the gain equation:

𝐴 =
𝑅3

𝑅1

(𝑉+ − 𝑉−); 𝑅3 = 𝑅4; 𝑅1 = 𝑅2

Result: The output is close to what was expected in the gain calculation due to the high precision of our

resistors (±2%). For example:

𝑂𝑢𝑡𝑝𝑢𝑡 = (𝑉+ − 𝑉−) = 1.017 𝑉;

𝑉− = 1 𝑉; 𝑉+ = 2 𝑉. 𝑁𝑂𝑇𝐸: 𝑇ℎ𝑖𝑠 𝑤𝑎𝑠 𝑡𝑒𝑠𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑠

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

26 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.4 Biasing Circuit Output Test

Objective: Test whether the biasing circuit successfully biases the inherent function generator chip cor-

rectly. Correct biasing allows for proper function of the current injection module.

Setup:

Figure 4.1.4a: Physical implementation of the biasing circuit to be tested

Figure 4.1.4b: LTspice Schematic for the biasing circuit to be tested

Procedure:

1. Setup the biasing circuit shown in Figure 4.1.4a without connecting the power supply and the in-

put.

2. Connect the power supply and then the input voltage.

3. Record the output.

4. Change capacitances (C4 in Figure 4.1.4b) and repeat step 3, taking note of the shape and voltage

swing.

Expected Result: In order to predict the results of the experimental system, simulations were performed

and yielded the following results:

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

27 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 4.1.4c: LTspice simulation output for a 1 Hz biased signal.

Figure 4.1.4d: LTspice simulation output for a 1 kHz biased signal.

The results from both LTspice simulations (Figure 4.1.4c and Figure 4.1.4d) suggest that biasing was suc-

cessful across all frequencies. It should be noted that voltage swing decreases proportionally with the ca-

pacitance.

Result: Physical testing confirmed expected results. Because of tradeoff when looking at voltage and ca-

pacitance swing, the 100 µF capacitor served as the optimal capacitance value for the circuit. The capaci-

tor results in a 10% drop in swing (1.8 VPP) while maintaining the sinusoidal shape needed for all fre-

quency ranges.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

28 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.5 Frequency Sweep Test

Objective: Test whether the function generator chip can generate sinusoids within frequency range 10 Hz

to 1 kHz.

Setup: The figures below show the schematic and physical implementation of the test circuit respectively.

Figure. 4.1.5a: Schematic of our setup of the function generator chip

Figure. 4.1.5b: Physical implementation of our test setup

Procedures:

1. Assemble the circuit shown in Figure 4.1.5a

2. Replace the digital potentiometer (Red box in Figure 4.1.5a) with an analog potentiometer. This

is done to simplify testing for manual frequency adjustment.

3. Adjust the potentiometer to the lowest resistance.

4. Record the output of the sine wave output pin.

5. Adjust potentiometer so that the next frequency is an increment of experiment choice.

6. Record the output of the sine wave output pin.

7. Repeat steps 5-6 as necessary, until all experiment frequencies are tested.

Expected Result: The function chip should produce the desired frequency range. Referencing the user

manual for the chip states that the chip can handle the range for this experiment. The range of interest for

this test is between 10 Hz to 1 MHz.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

29 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Result: The results reflect expectations, sinusoids within the desired frequency range were produced.

However, to produce the whole frequency range one capacitor value needed to be changed.

4.1.6 Initial Data Reading Experiment

Objective: Replicate the experiment in section 4.1.9 but replace the Arduino Uno with the Atmega1284P

that uses new code developed for it.

Setup: The following is the test circuit for Initial Data Reading Experiment

Figure 4.1.6a: Physical implementation of test circuit

Procedures:

1. Assemble Circuit above

2. Set frequency of function generator to desired value

3. Set parameters for serial communication (e.g., speed, polarity, data, etc)

4. Press button to start data acquisition

5. Save terminal output to text file

6. Run formatting Python script

7. Manually analyze the data

Expected Result: Similar results to the results from section 4.1.9

Result: The voltage response of the battery was measured after current was injected; the values of the test

can be found below in Figure 4.1.6b.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

30 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Voltage Reading

3.78299120234604

3.67546432062561

3.63147605083089

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

Figure 4.1.6b: Voltage equivalent value of captured ADC values at 13 Hz

The results are expected, the value hovers around the nominal voltage of the test battery. Changes in the

voltage response across the battery changes with the battery.

4.1.7 MATLAB Python Cross-platform Experiment

Objective: Have a MATLAB script call a python script that will format the collected data into a numeri-

cal format.

Setup: Raw data from the terminal in text files in the set file location with the Python script and

MATLAB in the same directory.

Procedure: Code and properly set up the windows environment to be able to have MATLAB call the py-

thon script.

Expected Result: Have the MATLAB script run the data formatting script in order to reduce time in data

processing.

Result: The python script was not able to run in the Windows environment. MATLAB did indeed call the

script properly but the python script would fail. Debugging was attempted for many hours. It was settled

that the data had to be formatted by the Python Script in a Linux environment and then transferred to

MATLAB.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

31 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.8 Current Maximization Experiment

Objective: Maximize the current flowing through the test battery while maintaining safe power dissipa-

tion and battery safety.

Setup: The following is a schematic of the test circuit and a physical implementation.

Figure 4.1.8a: Schematic setup of two current injection circuits used for testing and comparisons of input

currents

Figure 4.1.8b: Physical implementation of one current injection circuit. Limited materials prohibited sim-

ultaneously building and testing two current injection circuits.

Procedures:

1. Assemble the original current injection circuit (Left schematic of Figure 4.1.8a).

2. Prepare the battery for testing (Refer to Figure 4.1.8b’s yellow wires).

3. Using the function generator, send a voltage with an arbitrary frequency through the BJT (Figure

4.1.8b’s black wire). For the magnitude of the voltage, send in a voltage with an offset of

4. 2 V and an independent swing of 1 V.

5. Record the current flowing through the current injection circuit (Figure 4.1.8b’s blue wires)

6. Safely disconnect the circuit and assemble the new experimental current injection circuit (Figure

4.1.8a’s right schematic). It is highly recommended to keep the same wiring format so that the

same color coding can be used to maintain clarity and safety.

7. Repeat steps 1-4 for the new current injection circuit. If the current recorded is still not satisfac-

tory for user’s needs, repeat with new schematic setups.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

32 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Expected Result: Several systems were simulated to test for maximum current values.

Figure 4.1.8c: Output of the original current injection circuit (green) and the experimental setup (green).

Figure 4.1.8d: Output of the other experimental setups that never made it past simulations. The Darling-

ton configuration (Blue) and the Wilder current mirror output (Green).

Figure 4.1.8e (Bottom): Wilder current mirror schematic used for simulation (Left) and the Darlington

current amplifier schematic used for simulation (Right)

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

33 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The expected results are current in the 10 to 15 mA range and a sinusoidal output waveform. Two

different current sources were simulated to see if they met the specifications set for this project. The sche-

matics can be seen in Figure 4.1.8e and the outputs can be seen in Figure 4.1.8d. The Darlington and Wil-

der current sources were not physically tested because they did not meet required specifications. The Dar-

lington circuit cannot maintain a sinusoidal output waveform and the Wilder did not produce the current

magnitude needed. However, the circuit schematic shown in Figure 4.1.8a produced the output of Figure

4.1.8c and called for physical tests. While the output current from circuit in Figure 4.1.8a in simulations

has incredibly high current magnitude, in the physical implementation the current magnitude is lower.

Result: Testing of schematic in Figure 4.1.8a produced current in the desired magnitude range. Initially,

the current output of the current injection circuit was in the µA range [100 µA, 600 µA], this magnitude

cannot induce a voltage response from the battery. The low current was caused by the circuit setup and

current readings being done incorrectly. After fixing the issues, current varied in the mA range [9 mA, 15

mA].

4.1.9 Arduino ADC Testing

Objective: Test the output of the prototype to see if the responses induced produced valid test data that

reflect accurately the condition of the battery.

Setup: Figure 4.1.9a is a diagram of the Arduino UNO setup.

Figure 4.1.9a: Schematic of our testing setup

Procedures:

1. Setup test circuit as shown in Figure 4.1.9b.

2. Connect the corresponding serial communication cable (also powers Arduino Uno)

3. Adjust the frequency and note the value of said frequency.

4. Connect the testing battery through to the current injection circuit module.

5. Record the average voltage across the battery

6. Record the average current through the battery branch

7. Repeat steps 3-6 as desired.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

34 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Expected Result: We expected the outputs to be minimal in difference but still sinusoidal in nature. This

is because the impedance of the test battery is naturally low, so as a result of that, we expect the readings

being processed to be slight deviations from the nominal battery voltage. And after running it through a

excel macro that calculates the magnitude of the battery’s impedance, we expect it to be incredibly mini-

mal.

Result: The following is the impedance calculated at specified steps in the frequency range of the project.

Figure 4.1.9b is the impedance versus frequency plot while Figure 4.1.9b is a table of the impedance at

the corresponding frequency.

Figure 4.1.9b: Output of the test battery impedance magnitude over the entire frequency range.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

35 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Impedance Calculation of a “Good” Battery

Frequency (Hz) Impedance

10 0.127

25 0.127

50 0.124

75 0.1278

100 0.122

200 0.121

300 0.120

500 0.120

600 0.119

700 0.118

750 0.119

800 0.119

900 0.119

1000 0.118

Figure 4.1.9c: Hand calculations of impedance placed in a spreadsheet.

The results are inconclusive. While the ADC data acquisition works perfectly, there are still flaws in the

results. While the trend of the magnitude (Figure 4.1.9a) follows the trends of the experimental data that

this project is based; frequency and impedance being inversely correlated with each other, the impedance

magnitude is significantly different.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

36 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.10 Arduino to MATLAB Data Acquisition and Processing Experiment

Objective: Test to make sure what we did by hand in Arduino ADC testing can be automated and pro-

duce equivalent if not better results as well as define our testing procedures.

Setup: The following is the test circuit using the Arduino Uno in place of the Atmega1284P to make sure

the steps from data acquisition to processing is able to produce expected impedance values.

Figure 4.1.10a: Arduino setup used for testing

Procedure:

1. Connect differential amplifier output for battery to A0 as shown in figure 4.1.10a.

2. Connect differential amplifier output for current reading resistor to A1 as shown in figure 4.1.10a.

3. Set desired frequency for testing

4. Connect serial/power cable

5. Open communication port using PuTTY

6. Save the output to a text file

7. Convert from ADC values to voltage equivalent and save to spreadsheet

8. Read into MATLAB and run scripts

Expected Result: The outputs to be sinusoidal in nature with less than 5% offset to actual value. Calcu-

lated impedance should match data in the reference study within 5%.

Result: The collected data was processed and the final output can be seen in figure 4.1.10b. Data collec-

tion, transmission, and processing worked properly.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

37 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 4.1.10b

The collected data was sinusoidal as shown in the top graph of figure 4.1.10b. The data gathered

by the Arduino was communicated and processed. The data was processed to obtain the battery’s imped-

ance as shown in the bottom graph of Figure 4.1.10b. This calculated data was similar to the data in the

reference study.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

38 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.11 Arduino IDE and MATLAB Tool Box Experiment

Objective: Test whether the Arduino toolbox for MATLAB is suitable for our data capture needs as well

as see if the Arduino Analog to Digital Converter (ADC) will meet our needs.

Setup: Figure 4.1.11a is a diagram of the setup used to perform this experiment.

Figure 4.1.11a: A simple variable resistance branch that goes from 5V to ground with a potentiometer.

Pins A0 and A1 of an Arduino Mega 2560 are connected in order to capture the voltage drop.

Procedures:

1. Assemble the circuit shown in Figure 4.1.11a

2. Check the voltage level of the circuit using a multimeter

3. Check corresponding Arduino Serial Terminal and MATLAB variable to ensure accuracy of

ADC and that communication is established.

4. Check speed of data acquisition and MATLAB data processing

5. Check speed of ADC, communication, and MATLAB data handling

Expected Result: Results from the Arduino ADC and communicated through the serial port would be

correct but the communication would be slow but maybe manageable.

Result: The results from the Arduino ADC were correct but the communication was extremely slow.

Communicating the data to MATLAB and having MATLAB build the data arrays was too slow and inef-

ficient to satisfy the project requirements.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

39 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.12 MATLAB Data Processing Code Test

Objective: Using test data files the object was too

• Dynamically pull in the data to be stored in MATLAB arrays

• Be able to average the multiple arrays while not eating up processing time and memory

• Be able to output the multiple arrays and the extrapolated data in a MATLAB Figure

Setup: Excel files full of dummy data and a MATLAB script in the same file location.

Procedure: Using test data similar to figure 4.1.12a, create and debug code to accomplish the objectives.

1 4.15852902

2 4.09070257

3 4.85887999

4 5.7568025

5 5.95892427

Figure 4.1.12a: Example data

Expected Result: Produce a MATLAB script that pulled in data from an Excel file.

Result: Created a MATLAB function, with a snippet shown in figure 4.1.12b, that dynamically made file

names and then pulled in the data from the corresponding file in order to manipulate and process it. The

function architecture was chosen due to its handling of intermediate variables being better for memory

management.

Figure 4.1.12b: Snippet of the final developed code

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

40 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.1.13 PCB Development

Objective: Learn and eventually implement circuitry in Eagle PCB Design software

Setup: Installed Eagle PCB Design. Watched YouTube videos and read articles about proper Eagle use

and proper PCB design procedures.

Procedure:

1. Start on dummy circuit to gain an understanding of the program and proper implantation meth-

ods. One circuit is shown in figure 4.1.13a. Another is shown in figure 4.1.13b.

2. Send the design, shown in figure 4.1.13c, to a PCB printer to test design practices

3. Start on project implement, shown in figure 4.1.13e, to develop the full project circuit.

4. Send the design to a PCB printer

Figure 4.1.13a: First circuit implemented in Eagle. Developed with the help of a tutorial video

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

41 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 4.1.13b: Test circuit in Eagle to test printing capabilities and needs

Figure 4.1.13c: Top layer of test circuit printed by EE shop in Chung Hall

Figure 4.1.13d: Bottom layer of test circuit printed by EE shop in Ching Hall

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

42 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 4.1.13e: Final project circuit currently implemented in Eagle.

Figure 4.1.13f: Final printed circuit for the project

Expected Result: Quick and easy learning of the Eagle program that would lead to a quick and easy im-

plementation of the project circuit.

Result: The circuit of Figure 4.1.13a provided a basic understanding of the PCB program. The circuit of

4.1.3b was the first test design for the project. It was designed to implement a power system for the cir-

cuitry. When printed, shown in figure 4.1.13c and 4.1.13d, the shortcomings of the EE shop printing for

our system was shown. The complexity and sensitivity of our circuit made printing difficult. Figure

4.1.13e shows the final circuit implemented in Eagle with Figure 4.1.13f showing the printed version of

the system. Implementation of a prototype PCB board for the project was achieved the development pro-

cess was very difficult with printing being a major difficulty due to the complexity of the circuitry and

mixed part types.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

43 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

4.2 Experiment Results, Data Analysis and Feasibility

The project was proven to be feasible through the performed experiments. The experiments show

that that the data collection system gives similar values to the experiment this is based on. The hardware

modules are reliable, safe, and communication can be established between the microcontroller and user’s

computer.

Experiments 4.1.1, 4.1.2, and 4.1.4 proved that the required current could be safely generated and

injected into the battery. Experiment 4.1.5 further proved current generation’s feasibility because it

proved that the frequency range was possible to generate. Experiment 4.1.3 proved that the differential

amplifier configuration worked properly and its precision was enough for our purposes. Experiments

4.1.6, 4.1.7, 4.1.9, 4.1.10, 4.1.11, and 4.1.12 proved that data collection, formatting, and processing was

possible. They also proved that theoretical and experimental data was similar through development. Ex-

periment 4.1.13 took the results of the previous experiments and developed the final system. It developed

the full circuity and then designed and implemented a PCB to finalize the project.

The current injection induces a voltage response by the test battery. This response can be accu-

rately captured, stored, and transmitted to allow for processing. This processing allows for the battery

health trends to be discovered and explored. This is the basis of the project. The experiments proved this

process is possible and this project is feasible.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

44 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

5 Architecture and High-Level Design

5.1 System Architecture and Design

Figure 5.1.1 shows the high-level block diagram of the system. It shows how the various subsys-

tems interact with each other and their basic connections.

Figure 5.1.1 Block diagram for project circuitry

HARDWARE:

Variable frequency Sine and Square wave generation: The variable frequency sine/square wave gener-

ation component is used to power the current generation component of the system. The ability to switch

frequencies within f ∈ [1 Hz, 1 KHz] allows for various impedance measurements.

Current generation and injection: The current injection induces a voltage response at a set frequency

within the battery. This response is captured by the differential reading component. The current injection

module needs to be able to provide a current of the appropriate sinusoidal shape and magnitude i ∈ [1 mA,

20 mA].

Differential reading: Differential probes are placed in specific parts of the test circuit in order to measure

the appropriate data. The differential reading component gathers data on battery voltage and value of the

injected current. The current value is measured via the voltage of a small load resistor in series with the

overall module. These voltage readings are then processed in order to obtain impedance data.

Power distribution and voltage level division: Power is taken from a 12 V power adapter and is then

placed into the circuit. This provides a 12 V line that powers the function chip and a line that can be ma-

nipulated to get other voltage levels. A 5 V voltage regulator was used to produce a five-volt voltage line

for the microcontroller, biasing circuitry, and digital potentiometer. A 10 V regulator was used to produce

a 10 V voltage line for the differential amplifiers and the voltage inverter. A negative inverter also uses the

10 V voltage line to provide a -10 V supply voltage to the differential amplifiers.

Microcontroller: The microcontroller is the initial data processor. Using the built-in 10-bit ADC, the volt-

age values from the differential probes are quantized. Immediately after being quantized, the values are

then stored in an array waiting to be transmitted to a computer connected by Universal Serial Bus (USB).

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

45 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The USB cable used contains a Future Technology Devices International (FTDI) FT232RL USB/Serial

chip that takes in Transistor-Transistor Level (TTL) signal logic values that the microcontroller outputs

when using USART. The chip then produces a signal based on the USART initialization on the microcon-

troller that the computer can read.

SOFTWARE:

Serial Communication: The microcontroller reads the ADC data and builds an array of values. It then

sends the array via USART to a terminal and is captured on the processing computer.

Data Formatting: The data sent by the microcontroller and captured through the terminal cannot be un-

derstood directly by MATLAB. The file has to be formatted using a Python script and a visual basic macro.

The formatting code converts the microcontroller data into a voltage value that can be used by MATLAB

to determine impedance.

Cell Impedance Calculation: The system provides data for the MATLAB code to calculate the battery

impedance. The code takes out the nominal voltage of the battery, corrects the data to account for the dif-

ferential amplifier gains, and then averages the trials to reduce noise influence on the results. Once the

average battery voltage values and current values are computed, the impedance can be calculated. First, a

sinusoidal approximation of the voltage array is created in order to calculate the phase shift of the voltage.

After this calculation is performed the magnitude of the impedance is calculated and the real and imaginary

parts of the impedance are extracted via the phase calculation. After all the calculations it outputs a graph

of the data at the different frequencies for the user to see.

5.2 Hardware Architecture

The hardware of this project consists of circuitry, a microcontroller, and a computer. The circuit is

comprised of the Variable Frequency Voltage Generation module, Current Generation and Injection mod-

ule, and the Differential Readings module produces the analog data. The microcontroller captures the ana-

log data, converts it to digital values, and transmits it to the computer. The computer processes the data and

shows the results to the user. The microcontroller and computer also communicate user parameters to

change system specifications.

Figure 5.2.1 shows the general block diagram of the system. The circuitry is divided into four

blocks: Variable Frequency Voltage Generation, Current Generation and Injection, Differential Readings,

and Power Distribution and Voltage Division.

Figure 5.2.1 Block diagram for project circuity

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

46 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The Variable Frequency Voltage Generation module produces a sinusoidal and square wave volt-

age signal. Either the sinusoidal or square wave is selected and sent to the Current Generation and Injection

module. The frequency is set by a resistor-capacitor network. This network has a digital potentiometer to

allow for the network value to be changed digitally. The digital potentiometer value is set by the microcon-

troller for testing. The Current Generation and Injection module injects the current into the battery produc-

ing a response which is captured by the Differential Readings module. The Differential Reading module

captures the response of the battery and a dummy resistor, amplifies the response with a predetermined

gain, and then presents the response to the microcontroller for digitization.

The microcontroller is the transition between the circuitry and the computer. It interfaces with the

Differential Readings module to digitize the collected data. It also interfaces with the Variable Frequency

Voltage Generation module to allow for the frequency of the input signal to be changed through user input

from the computer. This frequency changing allows for the testing frequency sweep to be accomplished.

 The computer interfaces with the microcontroller to obtain the needed data for processing. The

data goes through multiple processing levels once transferred to allow for the required computation. Once

the computations are completed the results are presented to the user. The computer also allows the user to

set parameters in the circuitry.

The following sections development was led by Jack Gu:

• Variable frequency Voltage Generation

• Current generation and injection

• Differential reading

The following sections development was led by Jack Gatfield:

• External Power Supply

• Power Distribution and Voltage Division

• Computer

• Cell Impedance

The following sections development was led by Joseph Gozum:

• Microcontroller

The generic block diagram shown in Figure 5.2.1 is implemented in a through board prototype is

shown in Figure 5.2.2 and a printed circuit board in figure 5.2.3.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

47 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 5.2.2 Through Hole version of the circuity

Figure 5.2.4 PCB version of the circuity printed and assembled

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

48 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Table 5.2.1 shows how the system block diagram shown in figure 5.2.1 was implemented. This

implementation was shown in figure 5.2.2 and figure 5.2.3.

Block Diagram Module Executed System

External Power Supply 12 V Barrel Jack

Power Distribution and Voltage Division 5 V, 10 V, and -10 V voltage regulators

Variable Frequency Voltage Generation Function generator, potentiometer, and capacitor switch

Current Generation and Injection Signal selection switch and BJT

Differential Reading Two differential amplifiers

Microcontroller Microcontroller and support pin headers

Users computer User’s Computer

Table 5.2.1 Block diagram execution

The External Power Supply and Power Distribution and Voltage Division module are designed to

safely power the system. The Variable Frequency Voltage Generation, Current Generation and Injection,

and Differential Reading modules are designed to safely produce and capture a voltage response in the

battery. The microcontroller is designed to digitize the captured response and user-defined system param-

eters. The computer uses the digital data and calculates the impedance.

5.3 Software Architecture

For software, the project uses a microcontroller (Atmega1284P) programmed in embedded C, whose state

machine is shown in Figure 5.3.2 and a computer. There is also a computer that formats and processes data

that has its own state machine as seen in Figure 5.3.1. The microcontroller must communicate with and to

the computer. The computer keyboard provides parameter inputs that tell what parameters to set in software

for capturing data. The one parameter that needs setting is the digital potentiometer resistance. Once the

value is set, the microcontroller collects voltage data. The computer then receives data from the terminal in

hex format and then formats it to the corresponding decimal voltage equivalent.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

49 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 5.3.1 State machine for computer processing

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

50 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 5.3.2 State machine for microcontroller processing

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

51 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

5.4 Rationale and Alternatives

The rationale of the hardware architecture focuses on the most direct approach to acquire the data

and calculate impedance. To consider other architectures or approaches would be unnecessary unless some

other functionality was needed.

A Finite-State Machine representation was chosen for the software architecture because the device

is only in one specific state of operation at any given time. Changes based on external inputs are in a pre-

defined sequence, making a Finite-State Machine optimal choice. This architecture is also not computa-

tionally intensive nor deterministic, perfect for implementation on the microcontroller. This architecture is

also heavily event-driven which is required for the system because certain components need to act based

on certain external event/stimuli.

The main rationale for the project is optimizing the system to be able to easily implement while

still obtaining accurate data. For the hardware modules, the most straightforward and efficient circuitry was

taken to allow for easy data acquisition and minimal error occurrences. For the software programs, a desire

for compatibility on different operating systems ability to interact with the microcontroller was prioritized.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

52 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

6 Data Structures

Internal:

• N/A

Global:

• Arrays

• ADC values from across the battery and current reading resistor

• Formatted ADC values for MATLAB to process.

• Calculated Impedance values

• Test Frequencies

• User-defined structure

• Contain input terminal value corresponding with one of 256 wiper positions on the digital

potentiometer, testing delay, etc.

• Floating Point Integers

• Battery nominal voltage level

• Differential amplifiers gain

• Test Frequency Array

Temporary:

• Text files containing the terminal output after microcontroller sends data.

• Excel files containing the formatted terminal output

• MATLAB

• Arrays to read in the data files for the current frequency

• Various arrays to allow for manipulation and computation to calculate the impedance

6.1 Internal software data structure

• N/A

6.2 Global data structure

• Arrays containing ADC value across the battery and current reading resistor.

• User-defined structure containing the input terminal value corresponding with one of 256 wiper

positions on the digital potentiometer.

• Batteries nominal voltage level

• Differential amplifiers gain

• Test Frequency Array

6.3 Temporary data structure

• Text files: Created from the terminal output that contains raw data sent from the microcontroller,

afterwards converts to a voltage equivalent and stored in a CSV file.

• Arrays: Created during the data processing as intermediate values in order to obtain the impedance

data.

6.4 Database descriptions

• N/A

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

53 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7 Low Level Design

7.1 The Current Injection Circuit

When designing the current injection circuit, the main goal was to design a current source that

continuously generated a sinusoidal current without performance issues, regardless of frequencies.

Figure 7.1.0: Module of the current injection source in the overall schematic

 The current module is placed between the function generation module and the two differential

modules, as seen in Figure 7.1.0. The input to the module is the voltage output from the function genera-

tion module. The output to the module is the voltage reading taken by the differential amplifier modules.

Figure 7.1.1: Final schematic for the current injection circuit that injects sinusoidal current into the test

battery for data acquisition.

 The final chosen schematic for the module is shown in Figure 7.1.1. The model takes the most

direct approach while accounting for safety and current requirements discovered in the design process.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

54 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.2 Processing Narrative for Current Injection Circuit

Safety was the main concern in the initial design, resulting on a design focused on safety and current

stability rather than providing a strong current (i > 1 mA). This approach was taken due to the volatile

nature and response when current is directly injected into a battery.

Figure 7.1.3a: LTSPICE schematics for both the previous and final implementation of the current injec-

tion circuit. Note that the input is only an external sinusoid for the test schematic and in implementation

comes from the function generator chip (Module 4)

The first circuit design was the current mirror schematic (Figure 7.1.3). The basic current mirror

and Wilder current mirror appeared as the most viable design choices. After receiving feedback to keep the

current injection circuit design simple, the simple current mirror was chosen as the final design choice.

Figure 7.1.3b: Comparison of output currents across respective batteries. The green current indicates the

left model in Figure 7.1.3b while the blue current indicates the current from the right model in 7.1.3b

Initial simulation and testing of the module resulted in no issues. However, issues appeared when

multiple modules were tested together. The first issue occurred attempting to induce a response from the

battery with the differential probes (Module 3). With the current output being in the µA range (Green graph

in Figure 7.1.3b), no discernable differences from the nominal DC voltage could be measured. Current

amplification was needed before the injection process. Amplification resulted in lowering the load re-

sistance as much as possible while concurrently preventing power issues and circuit meltdowns. Thorough

testing resulted in a current that wouldn’t exceed 18 mA. An emitter resistance was added to enhance this

current as well as dissipate power. Testing found that the best emitter resistance values for the module falls

within the range of [15 Ω, 20 Ω], with the higher end for increased stability but lower current output and

vice versa.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

55 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The second issue was the unexpected impedance when connecting the function generator chip mod-

ule (Module 4) to the current injection circuit. Connection results in an unexpected drop in the input voltage

when connecting the voltage output to the current injection circuit. This change reduces the DC offset and

drops the input voltage from an input of 2 + 0.9 sin (wt.) to just simply 0.9 sin (wt.). Increasing the output

of the bias was needed to compensate for this loss. Without the bias, the BJT only produces a half-wave

sinusoid of the respective frequency since the nature of the BJT rejects negative voltage input. After slowly

increasing the bias of the biasing circuit to test until the input to the current injection circuit no longer looks

like a half-wave, the best bias value found was 4 V, rather than the initial 2 V.

7.2.1 Current Injection Circuit Interface Description

The current injection circuit comprises of a BJT (model 2N2222) to supply a sinusoidal current

that is injected into the test battery. The input for testing purposes comes from an external sinusoidal volt-

age source, but in implementation it comes from the biased output of the biasing circuit.

In regard to output in relations to other modules of the system, it outputs the voltage responses

that is read by the differential probes. These responses are measured from the test battery Vbattery and the

current measuring resistive load. The output of the Vbattery should be the nominal DC value with a slight

deviation over time for the voltage response. The VLoad across the battery should be similar in magnitude

to the desired injected current of [9 mA, 15 mA], meaning the VLoad falls in the range of [9 mV, 23 mV],

with the extra voltage due to slight extra resistance in the load resistor.

7.2.2 Current Injection Circuit Processing Details

The current injection circuit starts off with the BJT which serves as the core component of the

current injection circuit. The 2N2222 BJT model was chosen for being readily available and low-cost.

Branching off the emitter branch of the BJT is the emitter resistor, a high power (2 W) 15 Ω resistor. The

current injection set up induces a current to flow from the collector to the emitter, meaning that a sinusoi-

dal current within [9 mA, 15 mA] flows through the test battery, current measuring resistor, and emitter

resistor. The test battery is the standard 18650 Lithium-Ion battery and the current measuring resistor is

another high-power resistor (2 W) with a resistance of 1 Ω.

With this setup, when sending a sinusoidal input voltage (Vinput with amplitude [1 V, 3 V] and fre-

quency [1 Hz, 1 KHz]), the current injection circuit induces a current (Icollector with range [9 mA, 15 mA])

and frequency similar to the input frequency.

This setup does have issues. Power dissipation and safety was the largest of the issues and also

served as the largest constraints. The amount of measured voltage response is proportional to the magni-

tude of the injected current. However, increasing the current brings up the issues of power dissipation in

the circuit. This constraint resulted in optimizing the circuit to have minimal overall impedance while

concurrently maintaining a circuit that could run without issues. While current resistor values help max-

imize performance as well as maintain a safe operating system, the issue of transient response is not

solved with these resistors. To tackle this issue, it is advised to not switch frequencies too quickly when

performing manual measurements at specific frequencies. For frequency sweeps, a mechanism is needed

to disconnect the battery after testing a frequency before switching frequencies in the sweep. This pre-

vents transient responses from occurring that could potentially damage the battery and the test circuit.

However, this delay in switching frequencies causes performance issues, specifically in elongating the

testing time for frequency sweeps.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

56 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.3 The Function Generator Biasing Circuit

The biasing circuit module is implemented to correct the function generation module’s output. The output

of the bias is corrected because the natural bias provided the function generation module is not suitable

for the current injection module.

Figure 7.2.0: Module of the biasing circuit in the overall schematic

 The position of the module in relation to the overall circuit is shown in Figure 7.2.0. The input of

the biasing module is the output from the function generation module. The biasing module fixes the bias

of the voltage output and outputs it to the current injection module.

Figure 7.2.1: Test circuit for the biasing circuit that biases the output of the function generator chip.

After extensive testing, the final design and component values can be seen in Figure 7.2.1. Higher

capacitance results in better biasing but lowers the sinusoidal magnitude (and vice versa) while resistor

values just changes the values of the new bias.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

57 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.3.1 Processing Narrative for the Function Generator Biasing Circuit

Initially this module was not supposed to exist in the final system implementation. However, this

implementation was needed due to the inherent flaws of the function generator chip (XR-2206). Specifi-

cally, the chip automatically biases the voltage with an offset that’s approximately half of the power supply

used to power the chip, there would be a minimum offset of 5 V since the chip requires a power supply of

at least 10 V (power supply range of [10 V, 26 V]).

To tackle this issue, a biasing circuit was implemented. A common emitter amplifier was proposed

initially, but a simple biasing circuit was enough for the project’s needs. When building the biasing circuit,

the resistor network was simple as it was just a voltage divider following the formula:

𝑉𝑜𝑢𝑡 =
𝑉𝐶𝐶𝑅6

𝑅5 + 𝑅6

(𝐷𝐶) + sin (𝜔𝑡)

The difficulty in designing this module was the choice of the capacitor. While a lower capaci-

tance preserved more of the voltage swing from the input, a lower capacitance means that the biasing it-

self is poorly filtered, resulting in a flat DC signal as the output. Having a higher capacitance alleviates

this issue but in return causes a decrease in voltage swing, with the worst case in being half of the original

swing (2 Vpp to 1 Vpp). After extensive testing and consideration of the test bias circuit (module three), a

100µF polarized capacitor is chosen as it only causes a 10% swing decrease (2 Vpp to 1.8 Vpp) while pre-

serving the bias for the entire frequency range.

7.3.2 Function Generator Biasing Circuit Interface Description

The function generator biasing circuit takes an input voltage and re-biases it according to the pa-

rameters of the circuit components. Input for the biasing circuit is VSIN and the input range for voltage is

approximately 6 + 1 sin (wt). To power the biasing circuit, a power supply of 10 V is provided by the 10 V

power regulator from the power network.

The output for the biasing circuit is a voltage that’s approximately 4 + 1 sin (wt) and is fed into the

current injection module. Output in the test schematic is shown as VOUT_2 and represents the connection

between the biasing circuit module and the current injection module.

7.3.3 Function Generator Biasing Circuit Processing Details

The biasing circuit starts by filtering out the DC bias provided by the input (The output of the

function generator chip). This is done with a capacitor that goes in series with the input. Note that there is

an inherent tradeoff with the capacitor value. This constraint forces us to choose between DC filtering

performance and swing reduction. Higher capacitance values perform a better job at cancelling the initial

bias of the input signal but in return shrinks the voltage swing of the output. Although in the schematic the

capacitor value is stated to be 200 µF, the best and most appropriate value for the capacitor should be 100

µF. This allows for appropriate filtering of the input bias at all frequencies in the sweep while concurrently

causes minimal reduction in the output swing (~0.1V or 10% decrease in the overall swing).

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

58 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The next part of the biasing circuit is the voltage divider component of the module responsible for

the magnitude of the re-biased input. The offset of the output can be found from the voltage of the center

of the divider, meaning that resistor values must be adjusted accordingly to achieve the desired bias. For

testing purposes, a general 10 V power supply was used, but in implementation a 5 V power supply from

the 5 V regulator chip in the power network was used. The main constraint for this part of the circuit is the

available power supply, as the power supply determines the maximum possible bias of the output. Fortu-

nately, the output with the regulator chip’s power is sufficient for the current injection module.

7.4 The Differential Probes

The differential probes measure the voltage response from the current injection module. The module is

comprised of two differential amplifiers, one for the test battery and one for the resistive load. The differ-

ential amplifier then amplifies the response by a factor of nine.

Figure 7.3.0: Module of the differential probes in the overall schematic

 The differential probes are placed to the left of the microcontroller and to the right of the current

injection module, as seen in Figure 7.3.0. The input of the differential probes are the voltage responses

from the test battery and resistive load from the current injection module. The differential probes then

feed the output to the microcontroller to be further processed.

Figure 7.3.1: Test circuit for an individual voltage differential probe

 The final model for an individual probe is shown in Fig 7.3.1. Note that two separate models

make up the module in the final design.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

59 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.4.1 Processing Narrative for the Differential Probes

A direct approach was used for the design of the differential probes, leading to a differential am-

plifier. Although the signal was a sinusoidal with an offset, an OP-AMP based differential amplifier is

sufficient since only the magnitude of the voltages from the test battery and current measuring resistor/re-

sistive load matters. In other modules, the values of the gathered differential voltages are used for recon-

structing a sinusoidal figure for calculation.

The design in straightforward, using a simple differential amplifier circuit for both voltage differ-

ential measurement probes. The resistor network used in the differential probes are not important so long

as they are in a set ratio for the desired gain (Unity or 10). The gain for both measurement probes were

initially all one, but during testing it was hard for the voltage across the resistive load to be measured due

to low magnitudes [9 mV, 23 mV]. Amplifying the signal of the difference by a magnitude of 10 allowed

for better pickup while also staying within the range of measurable voltage ranges for the data acquisition

module (Module 6), [0 V,5 V]. Future implementations can result in higher gains for clearer data acquisi-

tion, but is presently unneeded and can cause potential safety risk or unwanted noise.

7.4.2 Differential Probes Interface Description

There are two differential probe circuits in the overall module, resulting in two inputs: the voltage

differences across the current measuring resistor and the test battery. Both components measured are found

in the current injection circuit module. Voltage difference for the battery is expected to be around the nom-

inal DC value of the battery with deviations from the forced response from the battery. Similarly, the voltage

across the current measuring resistor to be around the range of [9 mV, 23 mV].

There are also two outputs. The first output just passes the voltage difference across the battery to

the data acquisition module (Module six). The second output requires an amplification in order to help

improve the data acquisition and processing. This means that the values of the resistors used in the second

probe circuit must be modified. The test circuit resistor one and two values are reduced by 10 to a value of

1 KΩ. The output is then multiplied with a gain of 10, improving output range for the second probes to [90

mV, 230 mV]. Both outputs are then sent to the data acquisition module that reads these values at a more

precise level than conventional multimeter or oscilloscope measurements.

7.4.3 Differential Probes Processing Details

The probes offer a flexible circuit that could be easily adjusted. There are two types of differential

probes: probes that simply read the voltage difference (Gain of 1) and probes that amplified the voltage

difference by a factor of 10 (Gain = 10). The first probe circuit was used to measure and extract the voltage

difference over time for the test battery and has no amplification (Gain of 1). This extracted voltage differ-

ence is the first output to the data acquisition module with values within the range of the nominal battery

voltage with slight deviations. Amplification is required for the second probe before outputted to the data

acquisition module. This is done by modifying the values of the resistors of the circuit, based around the

formula:

𝐴 =
𝑅3

𝑅1

(𝑉+ − 𝑉−); 𝑅3 = 𝑅4; 𝑅1 = 𝑅2

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

60 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

This amplification of the voltage difference results in the range [90 mV, 230 mV]. This then feeds

into the second output which is also part of the data acquisition modules. The simplicity of the differen-

tial probes results in few constraints. Resistor precision is an incredibly important factor, especially since

precision and accuracy is important in data calculations. High-quality, incredible precise (±1%) resistors

are used to alleviate this error. Power dissipation isn’t an issue for the module, as the current that reaches

the voltages are inherently low from the nature of the OP-AMP.

7.5 The Function Generator Chip Circuit

The function generator module comprises of a function generation chip (XR-2206) and the com-

ponents are chosen according to the spreadsheet provided for the chip. The chip is tuned to the following

parameters:

• Frequency Range [1 Hz, 1KHz]

• Voltage swing of 1 volt: Vpp = 2V

• Sinusoidal shape

Figure 7.4.0: Module of the Function generator chip circuit in the overall schematic

 As seen in Figure 7.4.0, the function generator chip module is placed in between the power in-

verter and the biasing circuit module. The function generator chip module takes voltage from the power

network as input (+10 V and +5 V).

Figure 7.4.1: Internal circuit for the function generator chip circuit

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

61 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

 Figure 7.4.1 shows the components modified around the chip. The capacitor in blue and the resis-

tor network in maroon determines the frequency of the output voltage while the resistor network in green

determines the amplitude of the output.

7.5.1 Processing Narrative for the Function Generator Chip Circuit

There are several approaches to designing the function generation module. This module needs to

easily switch frequencies while also maintaining the amplitude of the voltage needed for the current injec-

tion module. Before using the function generator chip, several timers were considered.

Figure 7.4.1: Schematic for the 555 Timer circuit

The first approach was to use a 555 timer (shown in Figure 7.4.1), but this resulted in noticeable

errors in the timer, such as signal slewing as well as the frequency being off. Signal slewing is unaccepta-

ble in the final output due to the difficult nature in measuring the output frequency.

Figure 7.4.2: Output of the 555 Timer.

Figure 7.4.2 demonstrates the signal slewing of the 555 timer. What did not help the timer’s cause

was the need for more than two capacitances, suggesting the use of a variable capacitance. This adds

complications to the timer, leaving more room for error. Browsing around for alternatives lead to the

function generator chip used in the final implementation.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

62 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.5.2 Function Generator Chip Circuit Interface Description

The function generator chip circuit module takes in two inputs: a signal indicating which capacitor

branch (Figure 7.4.1 Blue box) the module should be connected to and an I2C signal that adjusts the Digi-

pot (Figure 7.4.1 maroon box) for specific frequencies. Input signals are matched and coordinated to gen-

erate a desired frequency. Refer to the lookup table included for what digital inputs to send for a certain

frequency.

The module is powered by a 12 V power supply from the power network, indicated as VCC in the

schematic Figure 7.4.0. The output of the function generator chip circuit is pin 2 in Figure 7.4.0 and is a

sinusoid due to wiring configurations of pin 13 and pin 14 in Figure 7.4.1. The sinusoid is a signal with DC

offset of 6 V, due to the inherent nature of the function generator chip. The AC component has been adjusted

to have a swing of 2 Vpp. The output is then sent to the function biasing circuit module (Module two). This

output in total is: 6 + sin (𝜔𝑡) and is sent to the current injection circuit module.

7.5.3 Function Generator Chip Processing Details

The main constraints lie within the chip parameters itself. The nature of the XR2206 function

generator chip does not allow for resistances larger than 1 MΩ to be used while the capacitance can only

accept capacitance inputs of the range [0.1µF, 100 µF]. Implementation of the capacitance branch is

needed to simplify the digital resistor network. This causes delays in overall processing time, due to the

need for capacitors to discharge before switching branches for safety.

Figure 7.4.3: Output of the function generator chip after biasing (High frequency range)

There is also the performance issue regarding the internal biasing, since it inherently biases the

output to way above desired voltage range. The function biasing circuit (Module two) is added to resolve

this issue. The frequency range is unchanged and is sinusoidal throughout the entire range, as shown in

both screenshots of Figure 7.4.3.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

63 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.6 Digital Potentiometer and I2C

Figure 7.5.0 is the input and output specifications of the digital potentiometer used in this project.

Figure 7.5.0: Input terminals of AD5422 programmed via I2C

7.6.1 Processing Narrative for I2C Communication

During the design phase of the project, after it was found that the XR2206 function generator IC

could be used to generate variable frequency waveforms, there needed to be a way to control the frequency.

In the datasheet of the XR2206, it shows a 1 MΩ analog linear potentiometer varying the frequency but in

order to automate the project, a digital potentiometer (AD5422) is a better replacement. The digital poten-

tiometer allows for a quicker and more precise change of resistance than an analog equivalent.

The digital potentiometer chosen has its resistance set by sending a specific 8-bit value over I2C.

In order to properly control the digital potentiometer, I2C communication was implemented on the micro-

controller.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

64 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.6.2 I2C Interface Communication Description

Figure 7.5.1 is the physical implementation of the test bench for I2C communication.

Figure 7.5.1: Physical implementation of the I2C communication circuitry

The digital potentiometer has 13 inputs but only 8 are used in the implementation and two outputs

which are the opposite ends of the potentiometer.

Of the 13 inputs, two are AD0 and AD1, these inputs set the last bits of the address of the digital

potentiometer to be used during I2C transmission. Both are must be physically set by attaching to an ap-

propriate voltage or grounding them. In the implementation in this project, both inputs are grounded to

represent zeros. Therefore, according to the datasheet the address of the Digital potentiometer is 0101100,

the first 5 bits are set in manufacturing.

Another 2 inputs are SDA and SCL, these are the data and clock signals respectively. VDD and

VSS are power inputs and these inputs are both set to VDD (5 V).

The final input utilized in the Battery Management System device is W1, also known as the wiper

of the digital potentiometer. The position is set by a digital signal, containing the position for a specific

resistance that is sent through I2C.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

65 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.6.3 I2C Processing Details

Figure 7.5.3 shows an example of an I2C signal being sent on the SDA line and the clock signal on the

SCL line.

Figure 7.5.3: Output of I2C processing

During testing of I2C communication to the digital potentiometer, the specifications for the I2C

standard were difficult to implement. There are many acknowledge signals that need to be generated and

acknowledged on both sides, eventually a library was used to implement I2C. The figure above shows the

signals generated over the SDA (blue waveform) and SCL (yellow waveform).

The waveforms look correct as the test data to be sent was 0xF8 (i.e., 1111 1000) and that was

sent repeatedly, the acknowledge signal is seen before the data that takes up about two clock cycles. Then

the data that follows is correct.

I2C is implemented as specified and works as desires. During actual implementation of I2C on

the breadboard and PCB, it is important to keep the distance short as I2C is highly affected by capacitance

of wire interconnects. If I2C is used more, then it is important to include more pullup resistors (of at least

4.7 kΩ) along the signal lines.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

66 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.7 USART

7.7.1 Processing Narrative for USART Communication

During initial discussion on the physical implementation, the need to send data from microcontrol-

ler to an external computer came up. It was understood that the calculations needed to find impedance is

too intense to run on a microcontroller. It was decided that processing needs to occur on a computer. RS232

is well-known as the standard for communicating with a PC from a microcontroller. To properly implement

the communication standard by hand takes a lot of time and debugging. To save time, a USB cable that

includes ICs that implement the RS232 standard were purchased. The cable takes in a USART signal then

converts it into an appropriate RS232 signal that can be understood by the computer.

Implementing USART communication is well-documented in the Atmega1284P datasheet and

even included examples written in the C programming language. Writing code for this module implemen-

tation was straightforward.

7.7.2 USART Interface Communication Description

Figure 7.6.1 shows the wiring configuration of the USB cable that transmit data from the micro-

controller to a computer.

Figure 7.6.1: USART Pin output used in the project

The header terminated end of the USB cable has 6 inputs but 3 can be grounded in this implemen-

tation. Ground, CTS, and RTS are connected to ground. CTS and RTS are used for data flow control pur-

poses but are unnecessary in this project. The most important inputs are TXD and RXD, while in the fig-

ure above it says they operate at 3 V levels, it can actually handle the 5 V signals outputted by the micro-

controller. The TXD (transmit pin) input it connected to the RXD output on the microcontroller and the

RXD input connected to the TXD output on the microcontroller. This allows the USB cable to receive the

transmitted data from TXD on the microcontroller and transmit to the RXD (receive pin) on the micro-

controller.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

67 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

USART implementation details:

• 9600bps (Baud rate)

• 8 data bits

• 1 stop bit

• No parity checking

• No flow controls

The main reason for the 9600 bps is that it provides the least amount of error during transmission

compared to higher baud rates, the higher rates are difficult for small microcontrollers to reliably send

data. In this device, the quality of the data is the most important aspect. The baud rate during testing only

leads to several second transmission times of hundreds of bytes. 8 data bits was the easiest to send and

receive without having to add extra software control. Parity checking was not implemented due to time

constraints and only being useful across noisy mediums. Flow control was also left out because it is just

not needed for this device.

7.7.3 USART Processing Details

Figure 7.6.2 shows an example of the output from the microcontroller being read on a computer via a ter-

minal emulator.

Figure 7.6.2: USART Interface using RealTerm for debugging

The implementation works just as desired. Data is able to be acquired on microcontroller and be

successfully transmitted to the computer. The only limitation of this module is that only 8 bits can be sent

at any given time by USART from the microcontroller, causing a time delay, but the overall transmission

time occurs only over several seconds.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

68 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.8 Data Acquisition

7.8.1 Processing Narrative for Data Acquisition

During the initial planning of the device, it was apparent the ADC would be an important compo-

nent of the design. The ADC quantities the output of the differential probes which is the data needed for

impedance calculations. The internal 10-bit SAR-based ADC in the Atmega1284P will be used, it can read

changes in the desired range (i.e., the mV range). A higher bit ADC provides higher precision of data

calculated but for the current iteration the internal ADC works well.

7.8.2 Data Acquisition Interface Description

The implementation of the ADC is simple and only involves setting the bits of four different 8-bit

registers that are memory-mapped on the Atmega1284P microcontroller. After setting the registers, the

ADC is set to Free-running mode. In this mode, the ADC is continuously quantizing values from the se-

lected input channel. The selected channel is based on certain bits set in one of the four setup registers. One

channel is used for the differential reading of the battery and is set to 1x gain. Another channel is used for

the differential reading around the current reading resistor at 10x gain.

7.8.3 Data Acquisition Details

In Figure 7.7.3a the equivalent voltage values of the 10-bit ADC values after being sent and pro-

cessed on a computer are shown.

Voltage Reading

3.78299120234604

3.67546432062561

3.63147605083089

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

3.6119257086999

Figure 7.7.3a Output reading of the ADC

The Atmega1284P microcontroller comes packaged with a 10-bit SAR-based ADC that allows the quanti-

zation of the differential probes.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

69 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.9 MATLAB

The circuitry gathers data for the user computer to process through MATLAB. The complex im-

pedance and the magnitude of the impedance are calculated for one frequency and for the full frequency

sweep. This project was focused on finding the impedance of the battery, but the data can be further extrap-

olated to give more answers.

7.9.1 Processing Narrative for Data Processing

Data processing is a crucial component of the system. The circuitry was developed to provide the

necessary data to allow for the impedance to be calculated. Due to the development team’s prior knowledge,

it was decided to use Python, Excel, and MATLAB to perform the necessary data formatting. Python and

Excel format the data from the raw USART files. Python takes the USART files, converts the data from

raw hex strings to individual integer values and stores the values into an Excel file. The Excel file removes

remnant elements from the Python processing and saves the data for MATLAB to access. MATLAB reads

in the file and build data arrays for them impedance calculations.

7.9.2 Data Processing Interface Description

The implementation of the MATLAB code has many supporting steps. These steps are needed to

allow for the data to be transferred, using USART, and formatted, using Python, to allow for processing

once these steps have been completed, Excel files of readable data are saved in the proper directory for the

MATLAB function to manipulate it.

Originally the code was to be executed through a script but this was improved to be a function call.

Figure 7.8.2a Frequency Call Header for frequency sweep data processing code

The function call gives the project further versatility in developing a GUI in the future but it also im-

proves program speed. MATLAB functions handle intermediate variables differently than scripts, so the

program became less intensive. In future work, optimization of the code is needed in order to further re-

duce execution time.

7.9.3 Data Processing Details

Figure 7.8.3a High level block diagram of data processing

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

70 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The MATLAB program pulls in the file values and builds arrays to allow for the needed calcula-

tions. First, the program averages the multiple trials per frequency to reduce noise and outliers. Then the

nominal voltage of the battery is removed from the average battery voltage to get the voltage drop. The

current resistor value is manipulated to get the current through the battery branch. With the voltage and

current values, the magnitude of the impedance can be calculated.

The complex impedance is also wanted so the phase shift of the data is needed. A default sine wave

at the proper frequency and a sinusoidal approximation of the voltage data are created to calculate the phase

shift. With this phase shift the complex impedance can be calculated and stored. The values of the magni-

tude and complex impedance at each frequency are computed and then output to the user.

This process can be executed at a single frequency (this was used for testing and development) and

have those results outputted but the frequency sweep allows for trends to be seen giving more information

about the batteries health.

7.9.4 Data Processing Important Code Snippets

Below are a few important snippets of code and a description of its functionality.

The above code is used to create a dynamic file name. This is needed because the code has to loop

through the frequencies and process the proper data. To obtain the data it has to be able to access the

corresponding file. Dynamic name generation does require the saved files to follow a naming convention

but it allows the processing code to operate more efficiently.

Figure 7.8.4a Code snippet of the file name creation system for the frequency sweep

The above code is a portion of the code used to calculate the phase shift between the injected current and

the current experienced by the battery.

Figure 7.8.4b Code snippet of the phase calculation

This takes the final computations and does a final averaging of the data points data and then saves them

to another array in order to output the information at the end of the frequency sweep.

Figure 7.8.4c Code snippet of the final data saving to be used in the final output

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

71 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.10 The Insufficient Current Problem

During the initial testing, the microcontroller was unable to extract data from the voltage reading

across the battery. The differential reading component was only reading the nominal DC value of the battery

rather than the induced change caused by the current. Upon looking further into the problem, the issue

behind this was that the current injected was insufficient in inducing a response within the battery.

7.10.1 Solving the Insufficient Current Problem

To solve the problem, the current injection component of the circuit was modified to increase the

current injected (200 µA increased to 15 mA). This was done by adding a resistor to the emitter as well as

reducing the load in the test circuit from 2,200 KΩ to 1 Ω. Through extensive testing, the best resistance to

be added to the emitter was found to be RE ∈ [15 Ω, 20 Ω]. Any lower resistance added to the emitter causes

a safety hazard, with the increased injected current being too high, causing the circuit to breakdown and

melt. Any higher resistance added to the emitter leads to insufficient change in the circuit.

7.11 How/Where do we Process the Data that we Collect Problem

During initial planning of the project, it was discovered the data collected from the ADC isn’t

practical for calculations, conversions, and processing on the microcontroller itself. The microcontroller is

limited in memory, ability to handle floating point numbers, and just overall computational power required

to find the impedance of the battery.

7.11.1 Use Python/MATLAB to do Conversions and Processes the Data

To compensate for the limited computational power of the microprocessor it was decided to us a separate

personal computer. The data is transmitted to the user computer and the computer handles the processing

to extract the impedance from the data. It was found that the communication between the microcontroller

and the computer produces file unreadable by MATLAB. This unreadability was solved through using a

Python script. Python takes the raw data and convert it from the 10-bit value acquired by the ADC to the

floating-point voltage equivalent, then it placed into a CSV file that is used by MATLAB. From here,

MATLAB takes the data and processes it to find the Magnitude and Phase of impedance, break it up into

its real and complex components, and then display this in graphs to the user.

7.12 The Injected Current Cutoff Problem

When measuring the output of the function generator circuit after biasing, it was found that the

biased voltage and swing was sufficient and close to ideal specification for the current injection circuit.

However, when testing components together, the effect the current injection circuit had in power dissipation

was not accounted for. This initially resulted in the biased signal to be insufficient, and it resulted in the

input voltage and therefore the injected current to be cutoff. This cutoff was due to it crossing the opera-

tional threshold of the transistor causing it to shut down.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

72 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.12.1 Solving the Injected Current Cutoff Problem

To fix this issue, the biasing of the function generator chip was increased. Additionally, sources of

extra resistance were found and minimized without affecting the systems performance. While the exact

reason for this unexpected drop in the input voltage for the current injection circuit is unknown, the biasing

circuit was adjusted to account for this unexpected modification to the input.

This readjustment accomplishes the task of preventing cutoff that would skew the data while con-

currently keeping the voltage range low enough to where the current injection circuit could operate.

7.13 The Power Dissipation and Battery Safety Issue

With the problem described in 7.9 the issue of power dissipation arose. With a higher current flow-

ing through the circuit a higher power was being experience by all the circuit parts. This higher power was

causing parts, especially the BJT and the emitter resistor, to heat up after short testing periods. This heat

would cause the BJT to become compromised, creating a major safety hazard. It could cause a huge current

(greater than 10 A) to flow through the circuit and potentially compromise the rest of the circuit and most

dangerously the battery. Power dissipation created the need to balance power ratings with the resistor

values. This balancing was needed in order to maximize current magnitude but maintain safety.

With the problem described in 7.13 changing the frequency of the signals caused unsafe transient

responses. Having large frequency steps during the sweep created large transient current responses that

could compromise the safe handling of the battery and circuit parts. Lowering the injected current was

shown to be a feasible solution to the unwanted transient responses but this led to not inducing a detectable

voltage response from the battery.

7.13.1 Solving the Power Dissipation and Battery Safety Issue

The power dissipation resistors used in the current injection modules had power ratings of two

Watts. Resistance values for the emitter and resistive load were chosen based on power ratings and current

maximization. High injection current plays a critical role in generating raw sufficient data.

Transient response when switching frequencies is another safety issue. Preserving the manual input

and frequency sweep feature, delays were introduced to allow the system to settle before switching fre-

quencies. This delay varies depends on the type of input, with frequency sweep containing low delay times

while manual inputs called for much higher delay times. Frequent delays go against lowering overall testing

time, but is a necessary tradeoff to ensure system reliability.

7.14 The Frequency Range Generation Problem

When originally designing the function generation frequency RC network it was discovered that

the full frequency range was not easily obtainable with a single capacitor. The values needed for the ca-

pacitor and the potentiometer were not available in commercial products. The plan was to have one non

polarized capacitor value of 0.1uF and to use a digital potentiometer to change the RC network value. It

was determined that with the original capacitor value a potentiometer range of 0.1 Ω to 10 MΩ. This

range is not feasible in hardware.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

73 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

7.14.1 Solving the Frequency Range Generation Problem

Two capacitor branches with a digital switch to select the branch was implemented. The switch

allows for the capacitor value to be changed, allowing the function generator chip to output the entire fre-

quency range.

Frequency Resistance (Ω) Capacitance(F)

1 Hz 10K 100µF

7 Hz 1.25K 100µF

...

1 KHz 10K 0.1µF

Table. 7.18.1: Table of lookup values for specific frequencies. Refer to the full table included for other

frequencies

Through experimentation and calculations, it was determined to use a 100 uF capacitor for lower

frequencies and a 0.1 uF capacitor for higher frequencies. These capacitor values allow the resistor of the

RC network to stay at values available to the potentiometer. The relationship between frequency, resistance,

and capacitance can be seen in table 7.18.1. This solution added onto the complexity of the function gener-

ation module, but it is needed to reasonably implement the frequency sweep.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

74 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

8 User Interface Design

Microcontroller:

Data Acquisition at a Single Frequency

The main user interface for the microcontroller is through a terminal window. Communicating via

USART, the microcontroller sends strings telling what state of operation the microcontroller is in (e.g.,

Initialization, Wait, Setting Digital Potentiometer, Acquisition, etc) after each statement of the state of

operation. During the choose frequency state, the microcontroller requests a HEX value that has been

mapped to a specific frequency.

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz

The user interface will be a terminal window. The terminal will print out the name of the state of

operation the microcontroller is currently in and then a newline. The terminal will also print out the spe-

cific frequency that is currently being used for data acquisition and then the data that was sent over on the

next newline.

Computer:

Python: A standard command shell/terminal interface.

MATLAB: MATLAB command window.

8.1 Application Control

Microcontroller:

Data Acquisition at a Single Frequency

Typical behavior is a static terminal window (RealTerm terminal emulation software was used

here), where sentences appear on separate new lines that state what mode of operation the microcontroller

is in. In the choose frequency state, the microcontroller will halt operation (and no newlines will occur)

until user input is given. During the sending data state, the microcontroller sends all acquired data from

the ADC to the terminal, this is required in order to capture the data and use it later for processing. The

most important aspect is that all the data from a single frequency acquisition period must all appear on

one line of its own. This is the basic configuration and design of the user interface with the microcontrol-

ler and can be extended as desired.

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz

 The typical design of the application control will be a terminal window. The user only needs to

press a specified button and the microcontroller will start acquiring data from every frequency in the pre-

determined range. Once the frequency is set, at each frequency a hardcoded amount of time for data ac-

quisition and appropriate resistor values will be set automatically. The most important aspect is that all

the data from a single frequency acquisition period must all appear on one line of its own.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

75 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Computer:

Python: Command shell/terminal in order to run the formatting script.

MATLAB: MATLAB command shell to run the corresponding formatting script.

8.2 User Interface Screens

Microcontroller:

Figure 8.2a Microcontroller state diagram

Data Acquisition at a Single Frequency

The microcontroller will have a singular, long-running screen. At each instance of a new state, the

microcontroller sends the name to the terminal window. The microcontroller can take input at specified

points. After all, states have executed, the system will repeat at the Wait State to start a new set of acqui-

sition, this configuration can be seen in Figure 8.2b.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

76 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Figure 8.2b Generic design of a microcontroller user interface

Data Acquisition of Frequency Sweep from 1 Hz to 1 KHz

 The same format as above (Data Acquisition at a Single Frequency) will be followed but repeated

for each frequency within the sweep range.

Computer:

Data Acquisition

To start the circuit in collecting the proper data a simple run button would be had with a brief summary of

the process that will occur when the program is running.

Figure 8.2c Example of a program begin and running menu of a LabVIEW window

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

77 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Data processing

Once the data acquisition stage of the system is complete. The computer will transition to data

processing functionality. The progress bar will still be progressing as it processes the data. Once the pro-

gram finishes a new window will appear showing the results and a brief summary of their meaning.

Figure 8.2d Example of a program output GUI in a LabVIEW window

LabVIEW has the capability to run all the needed programs. Using LabVIEW one GUI could be

developed to completely execute the data acquisition and data processing systems. However, LabVIEW

requires a paid license and then it takes time to develop the GUI based in LabVIEW.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

78 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9 Test Plan

9.1 Test Design

9.1.1 Testing for Floating Node Voltages

1. Objective: Test for floating node voltages at the transistor’s collector component.

2. Function tested: The current generation module.

3. Design objective involved: Injecting a sinusoidal current into a test battery.

4. Experiment Setup: The setup simply involves placing a test battery in series with a resistor and

the transistor. A high valued resistor is recommended to fully dissipate power generated from the

current running through the test battery.

Figure 9.1.1: Setup for floating node voltage testing

Important note for the setup is to follow the setup in Figure 9.1.1 exactly. This is because

if placed in the wrong terminal or order, the current won’t be dissipated properly, leading to a po-

tential circuit meltdown.

5. Procedure(s):

A. Setup the experimental setup shown in Figure 9.1.1.

B. Connect a function generator as the input (Figure 9.1.1 light blue wire)

C. Connect the test battery in series with the circuit (Figure 9.1.1 bottom orange wire)

D. In increments of 0.1 volts, input various DC voltages from zero to three volts.

E. For each increment, record the voltage at the collector (Figure 9.1.1 bottom orange

wire)

6. Expected Results: Running a quick initial test of the output indicates the possibility of a floating

node voltage.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

79 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.1.2 Testing the Injected Current Circuit’s Output

1. Objective: Test whether the output of the injected current through the battery is able to maintain

a sinusoidal waveform through the test battery.

2. Function tested: Current injection module.

3. Design objective involved: Injecting a sinusoidal current into the test battery.

4. Experiment Setup: Similar to experiment 9.1.1, the setup of the test circuit is extremely im-

portant. The model of the transistor is the 2N222 BJT.

Figure 9.1.2: Setup for testing output current waveform

Resistor values are arbitrary, depending on the personal preference of a higher or lower current

output. The only important component of the resistor is the location, as shown in Figure 9.1.2.

5. Procedure(s):

A. Setup the experimental setup in Figure 9.1.2.

B. Connect a function generator as the input (Figure 9.1.2 light blue wire)

C. Connect a test resistor (arbitrary value) in series with the circuit

D. Connect a voltage supply to the end of the test resistor.

E. With the function generator, input a sinusoidal voltage with an offset of two volts and a

swing of two volts (frequency is arbitrary).

F. Record the waveform shape across the test resistor using an oscilloscope.

G. Disconnect all voltage supplies.

H. Replace the DC voltage supply with a ground terminal.

I. Replace the test resistor with a test battery.

J. Place the sinusoidal input into the test circuit and record the waveform across the test bat-

tery.

6. Expected Results: When looking at simulations, there was no issue with maintaining a sinusoidal

current through the battery, so similar results should be expected.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

80 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.1.3 Testing the Output of the Function Generator Circuit

1. Objective: Test whether the function generator is able to generate the entire frequency range.

2. Function tested: Generate input voltage of varying frequencies.

3. Design objective involved: Injecting a sinusoidal current of varying frequencies into the test bat-

tery.

4. Experiment Setup: Test setup for this experiment is primarily based on the XR-2206 datasheet.

Refer to the datasheet for which resistor and capacitor values to use based on the desired fre-

quency.

Figure 9.1.3: Test setup for the function generation circuit

The chosen amplitude of the output waveform is one volt. Looking at Figure 9.1.3, the potentiom-

eter is shown in the setup is an analog potentiometer with a range of [10 Ω, 1 MΩ].

5. Procedure(s):

A. Setup the experimental circuit shown in Figure 9.1.3.

B. Provide the appropriate power supplies (+12 V for the function generation chip, + 5 V for

the biasing module)

C. Connect an oscilloscope to the output of the biasing module.

D. Slowly rotate the analog potentiometer, and note the shape of the waveform as well as the

frequency value.

E. Test for all frequencies within the objective range.

6. Expected Results: The entire frequency range could be generated without issues since it is well

within the limits of the function generator chip.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

81 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.1.4 Testing the Accuracy of the Differential Probes

1. Objective: Test the accuracy of the differential probes and see if it is good enough for the project

requirements.

2. Function tested: Raw data extraction of the induced voltage response across the battery.

3. Design objective involved: Extract the induced voltage response from the current being actively

injected into the battery.

4. Experiment Setup: The test setup for this the LF353N op-amp in differential amplifier configu-

ration. All the resistors are the same resistor value (suggested: 10 kΩ) to provide a 1X gain.

Figure 9.1.4: Test setup for the differential probes

5. Procedure(s):

A. Setup the differential probe circuit shown in figure 9.1.4

B. Feed two DC voltages with a small difference (~0.01 V) between the two of them.

C. Record the output voltage of the differential amplifier.

D. Repeat for different voltage values as much as needed.

6. Expected Results: The probes are expected to work and give the voltage difference between V+

and V- as previous LTspice simulations have shown.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

82 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.1.5 Testing the Data Extraction Feature

1. Objective: Test the ability of the data extraction feature (the ADC) and the ability to transfer the

data between the collection (microcontroller) and processing unit (computer).

2. Function tested: Data collection module.

3. Design objective involved: Collect the raw data and format the data to be used for processing.

4. Experiment Setup: The setup up is the Atmega1284P in the basic configuration to turn on. The

serial communication lines are then connected to be used for USART to a computer and the ADC

is also connected with the output from the differential amplifier.

Figure 9.1.5: Test set up for data transmission between microcontroller and computer

5. Procedure(s):

A. Set the frequency of input voltage

B. Inject battery with the produced current

C. Read induced voltage across the battery and current reading resistor via ADC

D. Send results from ADC to the terminal via USART serial communication

E. Format the data received into equivalent voltage values

F. Manually verify that results are in the correct range

6. Expected Results: Converted voltage value equivalents that vary around the nominal battery

voltage.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

83 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.1.6 Testing the Output of the Biasing Circuit

1. Objective: Test the output of the biasing circuit by changing the bias of the function generator

circuit’s output

2. Function tested: Biasing of the input voltage.

3. Design objective involved: Generating a sufficient input voltage for current injection.

4. Experiment Setup: The setup for this test consists of three resistors and a capacitor to produce a

DC offset that could be added to an input sinusoid.

Figure 9.1.6: Testing circuit for the biasing circuit

5. Procedure(s):

A. Setup the biasing circuit shown in figure 9.1.6.

B. Place two oscilloscope probes: One at the output of the function generator output and one

at the biasing output.

C. Start at the lowest frequency (1 Hz) and input the necessary power supplies.

D. Record the output of the biasing circuit.

E. Adjust the voltage divider as necessary after disconnecting the output of the function gen-

erator output after each acquisition.

F. Repeat steps C through E until desired bias is reached.

G. Adjust frequency to the highest in the range (1 kHz) and repeat steps C through F.

6. Expected Results: The input sinusoid is DC offset in the positive direction.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

84 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.2 Bug Tracking

A database, shown in table 9.2, is used to track defects found while performing the test cases. All

defects are logged as they are discovered. Defects are then assigned to individual members to investigate.

Test Defects

9.1.1 N/A

9.1.2 Circuit heats up if left on too long, suggesting power issue

9.1.3 Function generator heats up if frequency switches too fast

9.1.4 N/A

9.1.5 Was not getting the full 10-bit ADC value and the ADC was not in free running mode

9.1.6 Slewing of slopes of output as well as inconsistency in startup

Table 9.2 Database for bug tracking

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

85 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.3 Quality Control

The test described in section 9.1 either pass or fail the designed specifications. The results of

these tests are listed in table 9.3. This table had the date of the test and any seen deviations from the ex-

pected results.

Test
(Iteration)

Pass/Fail

(Fix Time)

Deviations

9.1.1

(1)

Fail

(Tues.

10/16/18)

Node voltage is inconsistent and isn’t following any static value or pattern

9.1.1

(2)

Pass

(Thurs.

10/18/18)

N/A

9.1.1

(3)

Pass

(Fri. 10/19/18)

N/A

9.1.2

(1)

Pass

(Fri. 11/23/18)

N/A

9.1.3

(1)

Fail (2/2/19) Slewing of the slopes of sinusoids, especially at lower frequencies (~100

Hz)

9.1.3

(2)

Pass (2/2/19) Slight slew at really low frequency (~ 1 Hz), but still sinusoidal enough for

data collection.

9.1.4

(1)

Pass (2/10/19) A slight deviation in gain (~0.95)

9.1.5

(1)

Pass (1/30/19) Data was gathered but Arduino is not the final implementation

9.1.5

(2)

Pass (2/10/19) Using the Atmega, data was not massively sinusoidal but it was being cap-

tured and processed

9.1.5

(3)

Pass (2/10/19) N/A

9.1.6

(1)

Fail

 (Tues.

1/29/19)

Output swing shrinks with frequency, also inconsistent.

9.1.6

(2)

Pass

(Thurs.

1/31/19)

Still slight swing decrease with frequency, but at max 0.1 V so deemed ac-

ceptable

Table 9.3 Table for test results

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

86 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

9.4 Identification of critical components

When testing the system, there are several components that need to be focused on to ensure that the

battery testing process is accurate and safe for use:

• Sufficient current (>1 mA) is flowing through the test battery in the current injection circuit mod-

ule. For reference, the current values when properly injected should fall in the range of [9 mA, 15

mA]. Conversely, the current should not exceed 20 mA or else safety issues with the overall cur-

rent injection circuit arises.

• Accuracy in the gain of the differential probes. The discrepancy between the claimed accuracy

and actual accuracy will skew data due to the change in the differential op-amps gain.

• The proper supply voltage is given to each module of the project. This is especially important for

the biasing circuit as the supply voltage plays a large role in determining the bias of the circuit.

Improper voltage levels will not allow sections of the system to operate properly.

• The input voltage to the current injection circuit should be sinusoidal and never cross the zero

thresholds. If this is not maintained the current will become non-sinusoidal.

9.5 Items Not Tested by the Experiments

• Overall test times for a frequency sweep. Due to issues incorporating the digital potentiometers

during testing, testing with the digital potentiometer is impossible at the moment. Recording test-

ing times with an analog potentiometer is inaccurate compared to an automated test.

• The needed discharge times. Due to risks with testing, minimal testing time to switch frequencies

is not advised for safety reason. Generous time is given between testing periods, preventing safety

issues but increasing the testing time.

• Accuracy, setting time, and effectiveness of the digital potentiometer.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

87 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

10 Test Report

10.1 Floating Node Voltage

Iteration one results: The results of the experiments suggests the probability of a floating node voltage. A

floating node voltage is a persistent voltage at a specified node that could potentially interfere with meas-

urements and overall results.

Figure 10.1.1: Table of the node voltage at the collector (Vc) vs. the input voltage (VB)

Figure 10.1.1 shown above shows the change in the node voltage value with different input voltage

values. Inability to explain the cause of these results or patterns in the voltage values highly encourages a

second iteration for verification.

Iteration two results: The results for the second attempt of the experiment yielded different results. The

results seem to suggest that there is no floating node voltages at the collector, suggesting that the results of

the first experiment are due to faulty equipment and human error.

Figure 10.1.2: Input voltage vs. Collector voltage (Blue) and current (Red)

Figure 10.1.2 show both the current and voltage values at the collector. The current is inherently

negative due to the properties of current mirrors. Collector voltages change proportionally with collector

current, suggesting that there are no floating node voltages. To verify the validity of these results, a third

test will be performed.

Iteration three results: The results are identical to the second iteration, suggesting the first iteration to be

wrong and should be ignored.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

88 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

10.2 Testing the Injected Current Circuit’s Output

Iteration one results: When looking at the expected results, the current through the battery should retain

the sinusoidal shape although some slight distortion might occur.

Figure 10.2.1: Oscilloscope output for the current (Top) and input voltage (Bottom).

The results shown in the oscilloscope in Figure 10.2.1 verify the expected results. The current through the

battery maintains the sinusoidal waveform with slight distortion. A second iteration is needed for verifica-

tion.

Iteration two results: The results are identical to the first iteration, confirming the idea that current injec-

tion through a battery maintains a sinusoidal shape.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

89 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

10.3 Testing the Output of the Function Generator Circuit

Iteration one results: Assuming correct setup of the function generator chip, the square and sinusoidal

waveforms should be properly generated. There should be no distortion as the frequency range used in the

final implementation (f ∈ [10 Hz, 1 KHz]) is well within the limits of the function generator chip.

Figure 10.3.1: Oscilloscope outputs for the sinusoidal and waveform nodes of the function generator chip

Both outputs in Figure 10.3.1 are shown to be clean and lacking in noise. The amplitude and fre-

quency values are also similar to the values depicted in the manual. A second iteration will be performed

after adjusting the parts just for verification.

Iteration two results: The results are identical to the first iteration. No issues were expected for both iter-

ations as circuit assembly followed the function generator chip’s manual to an exact degree.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

90 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

10.4 Testing the Accuracy of the Differential Probes

Iteration one results: To test the accuracy differential probes, two input voltages were given: ten volts and

nine volts. The expected output should be one volt, but instead was found to be 0.9 V. The differential probe

is for the most part accurate, with deviations due to deviations in the resistor values in the circuit. A second

iteration with different resistors will be used for verification.

Iteration two results: Identical results suggest that the deviations in the probes stem from low precision

resistors. It is suggested that for the final implementation that incredibly high precision resistors are used

for maximum accuracy.

10.5 Testing the Data Extraction Feature

Iteration one results: The first data extraction test is conducted using the Arduino Uno/Mega 2560. The

results create data that appears sinusoidal, similar to what was expected. The values itself are similar in

magnitude to the nominal battery voltage (DC value). Further data extraction tests with different microcon-

trollers are suggested to optimize the data extraction process.

Iteration two results: The second data extraction test is conducted using ATMEGA 1284P. The recorded

values are flat and static, with the magnitude incredibly similar to the nominal voltage of the battery. The

issue is believed to be from improper optimization of the ADC, meaning a second test is needed.

Iteration three results: The ATMEGA1284P is used for another test, this time with a properly optimized

ADC. The data extracted this time is inherently sinusoidal with slight deviation, as expected.

10.6 Testing the Output of the Biasing Circuit

Iteration one results: The biased circuit outputs voltage values that are different from what was expected.

It’s believed the discrepancy occurred due the capacitor blocking the original bias while also reducing our

output swing. Using a capacitor of 200 µF, the circuit successfully biased the signals at all frequencies, but

the output amplitude is reduced by half at high frequencies. A second test with different capacitors and

different capacitance values is recommended.

Iteration two results: Switching the capacitance to 10 µF fixes the amplitude issues at high frequencies.

However, the issue now occurs at low frequencies (~10 Hz). Switching the capacitor to an average value in

between 10 and 200 µF is recommended.

Iteration three results: Switching the capacitance to 100 µF balances the output at all frequencies. The

tradeoff is that there is a consistent 0.1 V decrease in the amplitude. However, the circuit successfully biases

the function generation chip output to be appropriate for the current injection module.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

91 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

11 Conclusion and Future Work

11.1 Conclusion

After thorough design and testing of the device, it achieves most of the design specifications ini-

tially set. The device is able to generate, capture, and analyze a voltage response from the test battery

when injected with a low sinusoidal current. Although system accuracy is unable to be fully verified, the

trends from multiple tests follow the data patterns presented in the experiment on which the device is

based on [3].

Objective Result Notes

Ic∈ [1 mA,20 mA] Implemented N/A

f∈ [1 Hz,1 KHz] Implemented A full frequency sweep was not possible for the implementa-

tion so frequency stepping of about 20 Hz was implemented

Flexibility in test-

ing circuit

Implemented Subsystems work completely independently so future modifica-

tion is possible

Cross platform

data movement

Partially

Implemented

Code and development environments ran into difficulties when

transitioning between Windows and Linux Operating systems.

Accurate Data

Collection

Implemented N/A

Overall accuracy

of 10%

Implemented Can be further improved to a higher accuracy range

Low Cost Implemented Final implementation is well within cost objective

Safe Power

dissipation

Implemented Basic level implemented can be improved

Short testing time Implemented Can be further improved on but still much less than conven-

tional methods

Easy to follow

Circuitry

Implemented PCB size not fully minimized but currently smaller than con-

ventional systems

Process data Partially

Implementing

Data is processed but the results have not been checked against

conventional system data

Table 11.1 Implementation Status of Design Objectives

For the partially implemented objectives a further explanation is found below:

• Cross platform data movement was hindered by Pythons interaction with the Windows operat-

ing system and Microsoft Visual Studio. When in a Linux environment the Python script oper-

ated properly and formatted the data for MATLAB’s use. Many hours of debugging went into

trying to get the conflict between windows and python to work but could not be fixed.

• For the MATLAB processing it works properly. The only thing that has not been completely

finished is an overall checking validation of the calculated data to data gathered from a con-

ventional system.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

92 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Throughout this project a lot of team and individual learning was required in order to be able to imple-

ment a working system. Individual members learned:

• Jack Gatfield:

• Team communication

• Proper documentation of the design process

• Communication between multiple levels of management

• Methodical methods for hardware and software debugging, testing, and documenta-

tion

• Understanding engineering optimization, trade-offs, and methodologies

• Organization of circuits, documentation, and software functions

• Understanding of working under deadlines.

• Jack Gu:

• Team communication

• Communication between multiple levels of management

• Being able to communicate ideas to others both textually and verbally

• Methodical method for hardware debugging, testing, and documentation

• Research in developing and testing components of a project

• Understanding of engineering optimization and tradeoffs

• Understanding of working under deadlines.

• Joseph Gozum:

• Team communication

• Proper documentation of the design process

• Understanding engineering optimization, trade-offs, and methodologies

• Understanding of working under deadlines.

• Methodical methods for software debugging, testing, and documentation.

• Interfacing with multiples devices using different communication standards

• Being able to communicate with different levels of management

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

93 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

11.2 Future Work

The IBMS improves efficiency and viability of lithium-ion cells through frequency-based testing methods

to catch poor health indicators. The current iteration of the design works, there are several key areas that

can be improved upon to improve the overall system.

• Overall size of the device. It can sit nicely on a desktop as it is now but can be further minimized

by designing a PCB utilizing SMT components.

• The PCB can also be further improved by separating the power generation, signal generation, and

data acquisition sections. This helps to further reduce noise. Also having a dedicated ground for

power, analog devices, and digital devices further reduces noise.

• Precision could be greatly improved by incorporating a higher bit SAR ADC or even using an

ADC based on the Sigma-Delta method. While the Sigma-Delta method is slower than a SAR

ADC, it provides higher resolution, and the conversion speeds are satisfactory for the data collec-

tion process. The fastest frequency tested is 1 kHz this requires a sampling frequency at least

twice that much which a Sigma-Delta ADC can satisfy. Another important benefit is that Sigma-

Delta ADCs provide the best noise isolation which is important with the small signals of the sys-

tem.

• Pushing the current through the battery to its more upper limits may also prove to be useful in de-

termining the voltage response required in the impedance calculation, injecting more current may

yield more noticeable results that can be more clearly captured but must be balanced with the

safety risks.

• Utilizing a microcontroller with DMA to its registers may prove helpful in the quality of the data

capture as it reduces the time between each ADC reading. Currently with the SAR ADC built into

the Atmega1284P, it takes a certain amount of time between each reading but a DMA could set it

so that it takes care of transferring the ADC data while CPU has more time to focus on the actual

acquisition.

• The quality of input impedance calculation can also be improved by utilizing higher-tolerance

and more wiper position digital potentiometers. Currently, every whole integer frequency within

the specified range cannot be produced because of the limitations of the resistance selection with

the digital potentiometer. Analog potentiometers also have the inability to set exact resistances

which is an issue impossible to ignore.

• The biggest improvement on this prototype is to implement the ability to test multiple battery

cells at once; this could be accomplished through a multiplex selecting different batteries.

• Utilize LabVIEW to create a signal GUI to interface with the device and processing. (Joseph Go-

zum) *Note: Very expensive option unless large additional funding

Students of future classes should definitely look into improving this design. The time spent on

this project has been fulfilling and great learning experience that really pushed this group to the limits of

the knowledge learned while attending the University of California, Riverside.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

94 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

The future market for this device is large. As the electric vehicle industry increases and a push for

more renewable resources is implemented lithium ion batteries will become more used. This increased

usage needs a better battery management system such as the one designed in this project to improve lon-

gevity and efficiency of the battery banks.

11.3 Acknowledgement

• Professor Mihri Ozkan and Cengiz Ozkan and Yige Li

o Provided the core project idea

o Helped with understanding test data

• Professor Roman Chomko

o Provided design concepts and feedback

• Impedance-Based Battery Management System for Safety Monitoring of Lithium-Ion Batteries

o By Bliss G. Carkhuff, Plamen A. Demirev, and Rengaswamy Srinivasan

▪ Gave background information

• Method and device for determining the impedance of an energy storage element of a battery

o By: Marco Ranieri and Vincent Heiries

▪ Helped develop implementation process

• Active Battery Cell Balancing

o By: Kevin Scott and Sam Nork

▪ Helped develop implementation process

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

95 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

12 References

[1] Atmel Corporation, “8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash”,

ATMEGA1284P Datasheet, Nov. 2009

[2] Analog Devices, “I2C-Compatible, 256-Position Digital Potentiometer”, AD5241/AD5242 Datasheet,

May 2014

[3] Bliss G. Carkhuff, Plamen A. Demirev, and Rengaswamy Srinivasan, “Impedance-Based Battery

Management System for Safety Monitoring of Lithium-Ion Batteries”, IEEE Trans, 2017

[4] Exar Corporation, “XR-2206 Monolithic Function Generator”, XR-2206 Datasheet, Feb. 2008

[5] Maxim Integrated, “Switched-Capacitor Voltage Convertors”, MAX1044 Convertor Datasheet, Nov.

2017

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

96 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13 Appendices

13.1 Appendix A: Parts List

Parts in final circuit design

Needed Part QTY. Used Part

12V DC Power Adapter 1 12V DC Power Adapter

Barrel Jack 1 Barrel Jack

0.33uF non polarized capacitor 2 0.33uF non polarized capacitor

0.1uF non polarized capacitor 4 0.1uF non polarized capacitor

5V voltage regulator 1 L7805C

10V voltage regulator 1 BA17810

Voltage inverter 1 Max1044CPA+

Potentiometer (Digital for PCB, analog for

through hole board)

1 AD5242

Function generating chip 1 XR2206

2 level dip switches 2 2 level dip switches

NPN BJT 1 2n2222a

18650 battery holders 1 Surface 18650 battery holders

18650 battery Test

batch

4 test batteries

Op amp 1 LF353

Microcontroller 1 Atmega1284p

Programmer and cable 1 Atmega 1284p variations

Program header 1 IEEE UCR programmer header

Serial communication cable 1 FTDI Serial TTL-232 USB Cable

Resistors (1Ω to 20kΩ) 25 1Ω, 15Ω, 100 Ω, 220 Ω, 300Ω, 1kΩ, 4.7kΩ,

5.1kΩ, 10kΩ, 20kΩ

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

97 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.2 Appendix B: Equipment List

Equipment Use

Oscilloscope Check signals throughout circuits

Desktop power supply Power circuit

Multimeter Check different aspects of the circuit

Computers Interface with the microcontroller, process the data, and allow for

document making

Arduinos Development and testing systems

Solder station, board holder, and

suction pen

Solder the through hole and PCB together

Breadboards Foundation of prototypes and testing

Various resistors, capacitors, and

ICs

Used for development and testing

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

98 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.3 Appendix C: Software List

Software Use

MATLAB Data Processing

Python Command

Shell

Data Formatting

PuTTY Serial Terminal for data capture and serial communication to microcontroller

RealTerm Serial Terminal for data capture and serial communication to microcontroller

Atmel studio Programming the microcontroller

Eagle PCB PCB designing and file generation for printing

AutoCAD Designing of housing for PCB

LTspice Circuit simulation and design

Arduino IDE Programming Arduino for testing throughout development

Arduino Serial ter-

minal

Terminal communication throughout development

Microsoft Office

Suite

Documentation, presentation, and report generation and formatting. Excel was

also used for data storage.

Google Doc Suite Documentation, presentation, and report generation and formatting

Google Hangouts Team meeting when not in person

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

99 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.4 Appendix E: User’s Manual

DIGITAL TEST:

1. Connect the power supply into a wall outlet

2. Connect the serial cable to the processing laptop

3. Select type of test.

a) Frequency Sweep

b) Singular frequency

4. Connect battery into a battery holder

5. Enable test

6. Wait for processing to occur

7. Acquire results and repeat if needed.

8.

NOTE:

• When testing with singular frequencies, please allow for a minimum time of a minute to pass before

attempting a test at a different frequency. This is to ensure safety as well as to prevent transient

responses that could potentially damage the device.

•

ANALOG TEST:

1. Connect the appropriate power supply to each individual component of the circuit.

a) For the amplifiers, feed a +10V/-10V into the LF353’s power terminals.

b) For the Function generation module, feed a 12V power supply into the XR2206’s

power terminals.

c) For the biasing module, feed a 5V power supply into the power terminal of the

biasing module.

2. Using an oscilloscope for reference, adjust the potentiometer until the desired frequency is reached.

Rotate the potentiometer clockwise to increase input frequency and vice versa.

3. Once satisfied, connect the biasing module output to the current injection circuit.

4. Place the battery into the battery holder.

5. Measure results

6. Disconnect the battery first then the output of the biasing module.

7. Repeat steps 2-6 as needed.

8.

NOTE:

• When doing multiple tests, please allow for a time delay of thirty seconds before reconnecting new

frequency inputs into the current injection circuit. This is done due to safety concerns.

• If doing a step and trying to minimize test times, keep to low step sizes (<10 Hz).

• If an emergency occurs and there are unexpected shorts or other issues, disconnect the battery im-

mediately to cause the emergency shutdown.

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

100 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.5 Appendix F: Frequency Lookup Table (DIGITAL)

Desired

Frequency
Terminal

Value

(HEX)

Re-
sistance

(Ω)

Capaci-
tance

(µF)

Digi pot
value

(HEX)

Period (s) Period (minutes) Collection rate (Pe-

riod/256)
Delay

(ms)

1 Hz 23 10K 100 2 1 0.01666666667 0.00390625 0.004

4 Hz 24 2.5K 100 0 0.25 0.004166666667 0.0009765625 0.001

7 Hz 25 1.42K 0.1 0 0.1428571429 0.002380952381 0.0005580357143 0

10 Hz 26 1M 0.1 FF 0.1 0.001666666667 0.000390625 0

13 Hz 27 769.23K 0.1 C4 0.07692307692 0.001282051282 0.0003004807692 0

16 Hz 28 625K 0.1 9F 0.0625 0.001041666667 0.000244140625 0

19 Hz 29 526.32K 0.1 86 0.05263157895 0.0008771929825 0.0002055921053 0

22 Hz 2A 454.55K 0.1 74 0.04545454545 0.0007575757576 0.0001775568182 0

25 Hz 2B 400K 0.1 66 0.04 0.0006666666667 0.00015625 0

28 Hz 2C 357.14K 0.1 5B 0.03571428571 0.0005952380952 0.0001395089286 0

31 Hz 2D 322.58K 0.1 52 0.03225806452 0.0005376344086 0.0001260080645 0

34 Hz 2E 294.12K 0.1 4B 0.02941176471 0.0004901960784 0.0001148897059 0

37 Hz 2F 270.27K 0.1 45 0.02702702703 0.0004504504505 0.0001055743243 0

40 Hz 30 250K 0.1 3F 0.025 0.0004166666667 0.00009765625 0

43 Hz 31 232.56K 0.1 3B 0.02325581395 0.0003875968992 0.00009084302326 0

46 Hz 32 217.39K 0.1 37 0.02173913043 0.0003623188406 0.00008491847826 0

49 Hz 33 204.09K 0.1 34 0.02040816327 0.0003401360544 0.00007971938776 0

52 Hz 34 192.31K 0.1 31 0.01923076923 0.0003205128205 0.00007512019231 0

55 Hz 35 181.18K 0.1 2E 0.01818181818 0.000303030303 0.00007102272727 0

58 Hz 36 172.41K 0.1 2C 0.01724137931 0.0002873563218 0.00006734913793 0

60 Hz 37 166.67K 0.1 2A 0.01666666667 0.0002777777778 0.00006510416667 0

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

101 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Desired

Fre-

quency

Terminal

Value

(HEX)

Re-

sistance

(Ω)

Capaci-

tance

(µF)

Digi pot

value

(HEX)

Period (s) Period (minutes) Collection rate (Pe-

riod/256)
Delay

(ms)

61 Hz 38 163.93K 0.1 29 0.01639344262 0.0002732240437 0.00006403688525 0

64 Hz 39 156.25K 0.1 27 0.015625 0.0002604166667 0.00006103515625 0

67 Hz 3A 149.25K 0.1 26 0.01492537313 0.0002487562189 0.00005830223881 0

70 Hz 3B 142.86K 0.1 24 0.01428571429 0.0002380952381 0.00005580357143 0

73 Hz 3C 136.99K 0.1 23 0.01369863014 0.0002283105023 0.00005351027397 0

76 Hz 3D 131.58K 0.1 3 0.01315789474 0.0002192982456 0.00005139802632 0

79 Hz 3E 126.58K 0.1 20 0.01265822785 0.0002109704641 0.00004944620253 0

82 Hz 3F 121.95K 0.1 1F 0.01219512195 0.0002032520325 0.00004763719512 0

85 Hz 40 117.65K 0.1 1E 0.01176470588 0.0001960784314 0.00004595588235 0

88 Hz 41 113.64K 0.1 1D 0.01136363636 0.0001893939394 0.00004438920455 0

91 Hz 42 109.89K 0.1 1C 0.01098901099 0.0001831501832 0.00004292582418 0

94 Hz 43 106.38K 0.1 1B 0.01063829787 0.0001773049645 0.00004155585106 0

97 Hz 44 103.09K 0.1 1A 0.01030927835 0.0001718213058 0.00004027061856 0

100 Hz 45 100K 0.1 19 0.01 0.0001666666667 0.0000390625 0

120 Hz 46 83.33K 0.1 15 0.008333333333 0.0001388888889 0.00003255208333 0

130 Hz 47 76.92K 0.1 13 0.007692307692 0.0001282051282 0.00003004807692 0

160 Hz 48 62.5K 0.1 0F 0.00625 0.0001041666667 0.0000244140625 0

190 Hz 49 52.63K 0.1 0D 0.005263157895 0.00008771929825 0.00002055921053 0

220 Hz 4A 45.45K 0.1 0B 0.004545454545 0.00007575757576 0.00001775568182 0

250 Hz 4B 40K 0.1 0A 0.004 0.00006666666667 0.000015625 0

280 Hz 4C 35.71K 0.1 9 0.003571428571 0.00005952380952 0.00001395089286 0

310 Hz 4D 32.26K 0.1 8 0.003225806452 0.00005376344086 0.00001260080645 0

340 Hz 4E 29.41K 0.1 7 0.002941176471 0.00004901960784 0.00001148897059 0

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

102 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Desired

Fre-

quency

Terminal

Value

(HEX)

Re-

sistance

(Ω)

Capaci-

tance

(µF)

Digi pot

value

(HEX)

Period (s) Period (minutes) Collection rate (Pe-

riod/256)
Delay

(ms)

370 Hz 4F 27.03K 0.1 6 0.002702702703 0.00004504504505 0.00001055743243 0

400 Hz 50 25K 0.1 6 0.0025 0.00004166666667 0.000009765625 0

430 Hz 51 23.26K 0.1 5 0.002325581395 0.00003875968992 0.000009084302326 0

460 Hz 52 21.74K 0.1 5 0.002173913043 0.00003623188406 0.000008491847826 0

490 Hz 53 20.41K 0.1 5 0.002040816327 0.00003401360544 0.000007971938776 0

520 Hz 54 19.23K 0.1 4 0.001923076923 0.00003205128205 0.000007512019231 0

550 Hz 55 18.18K 0.1 4 0.001818181818 0.0000303030303 0.000007102272727 0

580 Hz 56 17.24K 0.1 4 0.001724137931 0.00002873563218 0.000006734913793 0

610 Hz 57 16.39K 0.1 4 0.001639344262 0.00002732240437 0.000006403688525 0

640 Hz 58 15.63K 0.1 4 0.0015625 0.00002604166667 0.000006103515625 0

670 Hz 59 14.93K 0.1 3 0.001492537313 0.00002487562189 0.000005830223881 0

700 Hz 5A 14.29K 0.1 3 0.001428571429 0.00002380952381 0.000005580357143 0

730 Hz 5B 13.69K 0.1 3 0.001369863014 0.00002283105023 0.000005351027397 0

760 Hz 5C 13.16K 0.1 3 0.001315789474 0.00002192982456 0.000005139802632 0

790 Hz 5D 12.66K 0.1 3 0.001265822785 0.00002109704641 0.000004944620253 0

820 Hz 5E 12.2K 0.1 3 0.001219512195 0.00002032520325 0.000004763719512 0

850 Hz 5F 11.76K 0.1 3 0.001176470588 0.00001960784314 0.000004595588235 0

880 Hz 60 11.36K 0.1 2 0.001136363636 0.00001893939394 0.000004438920455 0

910 Hz 61 10.99K 0.1 2 0.001098901099 0.00001831501832 0.000004292582418 0

940 Hz 62 10.64K 0.1 2 0.001063829787 0.00001773049645 0.000004155585106 0

970 Hz 63 10.31K 0.1 2 0.001030927835 0.00001718213058 0.000004027061856 0

1 KHz 64 10K 0.1 2 0.001 0.00001666666667 0.00000390625 0

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

103 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.6 Appendix G: Frequency Lookup Table (ANALOG)

Desired Frequency Resistance Capacitance

1 Hz 10K 100µF

4 Hz 2.5K 100µ F

7 Hz 1.42K 0.1µ F

10 Hz 1M 0.1µ F

13 Hz 769.23K 0.1µ F

16 Hz 625K 0.1µ F

19 Hz 526.32K 0.1µ F

22 Hz 454.55K 0.1µ F

25 Hz 400K 0.1µ F

28 Hz 357.14K 0.1µ F

31 Hz 322.58K 0.1µ F

34 Hz 294.12K 0.1µ F

37 Hz 270.27K 0.1µ F

40 Hz 250K 0.1µ F

43 Hz 232.56K 0.1µ F

46 Hz 217.39K 0.1µ F

49 Hz 204.09K 0.1µ F

52 Hz 192.31K 0.1µ F

55 Hz 181.18K 0.1µ F

58 Hz 172.41K 0.1µ F

60 Hz(*) 166.67K 0.1µ F

61 Hz 163.93K 0.1µ F

64 Hz 156.25K 0.1µ F

67 Hz 149.25K 0.1µ F

70 Hz 142.86K 0.1µ F

73 Hz 136.99K 0.1µ F

76 Hz 131.58K 0.1µ F

79 Hz 126.58K 0.1µ F

82 Hz 121.95K 0.1µ F

85 Hz 117.65K 0.1µ F

88 Hz 113.64K 0.1µ F

91 Hz 109.89K 0.1µ F

94 Hz 106.38K 0.1µ F

97 Hz 103.09K 0.1µ F

100 Hz 100K 0.1µ F

120 Hz (*) 83.33K 0.1µ F

130 Hz 76.92K 0.1µ F

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

104 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Desired Frequency Resistance Capacitance

160 Hz 62.5K 0.1µ F

190 Hz 52.63K 0.1µ F

220 Hz 45.45K 0.1µ F

250 Hz 40K 0.1µ F

280 Hz 35.71K 0.1µ F

310 Hz 32.26K 0.1µ F

340 Hz 29.41K 0.1µ F

370 Hz 27.03K 0.1µ F

400 Hz 25K 0.1µ F

430 Hz 23.26K 0.1µ F

460 Hz 21.74K 0.1µ F

490 Hz 20.41K 0.1µ F

520 Hz 19.23K 0.1µ F

550 Hz 18.18K 0.1µ F

580 Hz 17.24K 0.1µ F

610 Hz 16.39K 0.1µ F

640 Hz 15.63K 0.1µ F

670 Hz 14.93K 0.1µ F

700 Hz 14.29K 0.1µ F

730 Hz 13.69K 0.1µ F

760 Hz 13.16K 0.1µ F

790 Hz 12.66K 0.1µ F

820 Hz 12.2K 0.1µ F

850 Hz 11.76K 0.1µ F

880 Hz 11.36K 0.1µ F

910 Hz 10.99K 0.1µ F

940 Hz 10.64K 0.1µ F

970 Hz 10.31K 0.1µ F

1 KHz 10K 0.1µ F

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

105 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.7 Appendix H: MATLAB Code/Data formatting code

Frequency Sweep Data Processing Code

clear all;

close all;

clc;

%variable decloration

BatteryVoltage = 3.2;

CurrentResistor = 1;

FrequencyCount = 1;

CurrentGain = 9.2;

PhaseRunner = 0:(8*pi)/255:8*pi;

t = 1:256;

FrequencyRange = [1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 60, 61, 64,

67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 120, 130, 160, 190, 220, 250, 280, 310, 340, 370, 400,

430, 460, 490, 520, 550, 580, 610, 640, 670, 700, 730, 760, 790, 820, 850, 880, 910, 940, 970, 1000];

[FrequencyRows,FrequencyColumn] = size(FrequencyRange);

BatteryImpedence = zeros(1,256);

AvgVoltagePull = zeros(1,FrequencyColumn);

AvgCurrentPull = zeros(1,FrequencyColumn);

AvgBatteryImpedence = zeros(1,FrequencyColumn);

AvgComplexBatteryImpedence = zeros(1,FrequencyColumn);

%loop through all test frequencys --> 66 total frequencies

for FrequencyCount =1:FrequencyColumn %FrequencySize

filename = sprintf('%s_%d','TestData',FrequencyRange(FrequencyCount));

filename = strcat(filename, ".csv");

%Pulls columns in from Excel Sheet that the serial terminal will popualte

Voltage1 = xlsread(filename,"A2:A257"); %Gets data for voltage calculations

Voltage2 = xlsread(filename,"A258:A513");

Voltage3 = xlsread(filename,"A514:A769");

Voltage4 = xlsread(filename,"A770:A1025");

Voltage5 = xlsread(filename,"A1026:A1281");

CurrentVoltage1 = xlsread(filename,"A1282:A1537"); %Gets data for current calculations

CurrentVoltage2 = xlsread(filename,"A1538:A1793");

CurrentVoltage3 = xlsread(filename,"A1794:A2049");

CurrentVoltage4 = xlsread(filename,"A2050:A2305");

CurrentVoltage5 = xlsread(filename,"A2306:A2561");

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

106 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

%Transposes column array to be a row array

Voltage1 = Voltage1';

Voltage2 = Voltage2';

Voltage3 = Voltage3';

Voltage4 = Voltage4';

Voltage5 = Voltage5';

CurrentVoltage1 = CurrentVoltage1';

CurrentVoltage2 = CurrentVoltage2';

CurrentVoltage3 = CurrentVoltage3';

CurrentVoltage4 = CurrentVoltage4';

CurrentVoltage5 = CurrentVoltage5';

%Subtracts the battery voltage out of the reading

Voltage1_mag = Voltage1 - BatteryVoltage;

Voltage2_mag = Voltage2 - BatteryVoltage;

Voltage3_mag = Voltage3 - BatteryVoltage;

Voltage4_mag = Voltage4 - BatteryVoltage;

Voltage5_mag = Voltage5 - BatteryVoltage;

%Divides by the test resistor value to get current

Current1 = CurrentVoltage1 / CurrentResistor;

Current2 = CurrentVoltage2 / CurrentResistor;

Current3 = CurrentVoltage3 / CurrentResistor;

Current4 = CurrentVoltage4 / CurrentResistor;

Current5 = CurrentVoltage5 / CurrentResistor;

%Divide by the current gain to get actual gain

Current1 = Current1 / CurrentGain;

Current2 = Current2 / CurrentGain;

Current3 = Current3 / CurrentGain;

Current4 = Current4 / CurrentGain;

Current5 = Current5 / CurrentGain;

%Take average of the multiple voltage data trials to isolate noise

Voltage_TotalMag = Voltage1_mag+ Voltage2_mag + Voltage3_mag + Voltage4_mag + Volt-

age5_mag;

Voltage_AvgMag = Voltage_TotalMag / 5;

%Takes avearge of the multiple current data trials to isolate noise

Current_TotalMag = Current1 + Current2 + Current3 + Current4 + Current5;

Current_AvgMag= Current_TotalMag / 5;

%Calculate battery impedence magnituded

for i = 1:256

 if Current_AvgMag(i) ~= 0

 BatteryImpedence(i) = Voltage_AvgMag(i) ./ Current_AvgMag(i);

 end

end

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

107 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

%Find phase shift

TestSin = sin(FrequencyRange(FrequencyCount).*PhaseRunner);

Average_Battery_Phase = mean(Voltage_AvgMag);

Amplitude_Battery_Phase = (max(Voltage_AvgMag)-min(Voltage_AvgMag))/2;

Peak_Battery = 100 * 2 * pi;

Phaseshift_Battery = 0;

myfit = NonLinearModel.fit(PhaseRunner,Voltage_AvgMag,

 'y~b0+b1*sin(b2*x1+b3)';

 [Average_Battery_Phase,

 Amplitude_Battery_Phase,

 Peak_Battery,

 Phaseshift_Battery]);

Z_PhaseShif_radians = acos(dot(myfit.Fitted,TestSin)/(norm(TestSin)*norm(myfit.Fitted)));

Z_PhaseShif_degrees = Z_PhaseShif_radians * 360 / (2*pi);

%Polar to Rectangular

x = BatteryImpedence.*cos(Z_PhaseShif_degrees);

y = BatteryImpedence.*sin(Z_PhaseShif_degrees);

ComplexImpedence = complex(x,y);

%disp(Z_PhaseShif_radians);

AvgVoltagePull(FrequencyCount) = mean(Voltage_AvgMag);

AvgCurrentPull(FrequencyCount) = mean(Current_AvgMag);

AvgBatteryImpedence(FrequencyCount) = mean(BatteryImpedence);

AvgComplexBatteryImpedence(FrequencyCount) = mean(ComplexImpedence);

end

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

108 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

%Graphing code

figure(1)

subplot(4, 1, 1)

 hold on

 stem(FrequencyRange,AvgVoltagePull)

 title("Average Voltage")

 xlabel("Frequency")

 ylabel("Magnitude [Volts]")

 grid on

 hold off

subplot(4, 1, 2)

 stem(FrequencyRange,AvgCurrentPull)

 title("Injected Current")

 xlabel("Frequency")

 ylabel("Magnitude [Amps]")

 grid on

subplot(4, 1, 3)

 stem(FrequencyRange, AvgBatteryImpedence)

 title("Average Magnitude of Battery Impedence")

 xlabel("Frequency")

 ylabel("Magnitude [Ohms]")

 grid on

subplot(4, 1, 4)

 scatter(real(ComplexImpedence),imag(ComplexImpedence))

 title("Battery's Impedence (X+jY)")

 xlabel("Real (X) [Ohms]")

 ylabel("Imaginary (jY) [Ohms]")

 grid on

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

109 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Single Frequency Data Processing Code

clear all;

close all;

clc;

%variable decloration

BatteryVoltage = 3.5;

CurrentResistor = 1;

Frequency = 13;

CurrentGain = 9.2;

PhaseRunner = 0:(8*pi)/255:8*pi;

t = 1:256;

%Generates file name to pull the data from

filename = sprintf('%s_%d','TestData',Frequency);

filename = strcat(filename, ".csv")

%Pulls columns in from Excel Sheet that the serial terminal will popualte

Voltage1 = xlsread(filename,"A2:A257"); %Gets data for voltage calculations

Voltage2 = xlsread(filename,"A258:A513");

Voltage3 = xlsread(filename,"A514:A769");

Voltage4 = xlsread(filename,"A770:A1025");

Voltage5 = xlsread(filename,"A1026:A1281");

CurrentVoltage1 = xlsread(filename,"A1282:A1537"); %Gets data for current calculations

CurrentVoltage2 = xlsread(filename,"A1538:A1793");

CurrentVoltage3 = xlsread(filename,"A1794:A2049");

CurrentVoltage4 = xlsread(filename,"A2050:A2305");

CurrentVoltage5 = xlsread(filename,"A2306:A2561");

%Transposes column array to be a row array

Voltage1 = Voltage1';

Voltage2 = Voltage2';

Voltage3 = Voltage3';

Voltage4 = Voltage4';

Voltage5 = Voltage5';

CurrentVoltage1 = CurrentVoltage1';

CurrentVoltage2 = CurrentVoltage2';

CurrentVoltage3 = CurrentVoltage3';

CurrentVoltage4 = CurrentVoltage4';

CurrentVoltage5 = CurrentVoltage5';

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

110 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

%Subtracts the battery voltage out of the reading

Voltage1_mag = Voltage1 - BatteryVoltage;

Voltage2_mag = Voltage2 - BatteryVoltage;

Voltage3_mag = Voltage3 - BatteryVoltage;

Voltage4_mag = Voltage4 - BatteryVoltage;

Voltage5_mag = Voltage5 - BatteryVoltage;

%Divides by the test resistor value to get current

Current1 = CurrentVoltage1 / CurrentResistor;

Current2 = CurrentVoltage2 / CurrentResistor;

Current3 = CurrentVoltage3 / CurrentResistor;

Current4 = CurrentVoltage4 / CurrentResistor;

Current5 = CurrentVoltage5 / CurrentResistor;

%Divide by the current gain to get actual gain

Current1 = Current1 / CurrentGain;

Current2 = Current2 / CurrentGain;

Current3 = Current3 / CurrentGain;

Current4 = Current4 / CurrentGain;

Current5 = Current5 / CurrentGain;

%Take average of the multiple voltage data trials to isolate noise

Voltage_TotalMag = Voltage1_mag+ Voltage2_mag + Voltage3_mag + Voltage4_mag + Volt-

age5_mag;

Voltage_AvgMag = Voltage_TotalMag / 5;

%Takes avearge of the multiple current data trials to isolate noise

Current_TotalMag = Current1 + Current2 + Current3 + Current4 + Current5;

Current_AvgMag = Current_TotalMag / 5;

%Calculate battery impedence magnituded

for i = 1:256

 if Current_AvgMag(i) ~= 0

 BatteryImpedence(i) = Voltage_AvgMag(i) ./ Current_AvgMag(i);

 else

 BatteryImpedence(i) = 0;

 end

end

%Find phase shift

TestSin = sin(Frequency.*PhaseRunner);

%Find actualy battery impedence

Average_Battery_Phase = mean(Voltage_AvgMag);

Amplitude_Battery_Phase = (max(Voltage_AvgMag)- min(Voltage_AvgMag))/2;

Peak_Battery = 100 * 2 * pi;

Phaseshift_Battery = 0;

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

111 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

%myfit = NonLinearModel.fit(PhaseRunner,Voltage_AvgMag,'y~b0+b1*sin(b2*x1+b3)',[Aver-

age_Battery_Phase,Amplitude_Battery_Phase,Peak_Battery,Phaseshift_Battery]);

myfit = NonLinearModel.fit(PhaseRunner,Voltage1_mag,'y~b0+b1*sin(b2*x1+b3)',[Average_Bat-

tery_Phase,Amplitude_Battery_Phase,Peak_Battery,Phaseshift_Battery]);

Z_PhaseShif_radians = acos(dot(myfit.Fitted,TestSin)/(norm(TestSin)*norm(myfit.Fitted)));

Z_PhaseShif_degrees = Z_PhaseShif_radians * 360 / (2*pi);

%Polar to Rectangular

x = BatteryImpedence.*cos(Z_PhaseShif_degrees);

y = BatteryImpedence.*sin(Z_PhaseShif_degrees);

ComplexImpedence = complex(x,y);

disp(Z_PhaseShif_radians)

%Graphing code

figure(1)

subplot(6, 1, 1)

 hold on

 stem(Voltage1_mag)

 stem(Voltage2_mag)

 stem(Voltage3_mag)

 stem(Voltage4_mag)

 stem(Voltage5_mag)

 title("Pulled in Data Array")

 xlabel("Data Point")

 ylabel("Magnitude [Volts]")

 legend('First Data Array', 'Second Data Array', 'Thrid Data Array', 'Fourth data array', 'Fifth

Data Array')

 grid on

 hold off

subplot(6, 1, 2)

 stem(Current_AvgMag)

 title("Average Magnitude of Branch Current")

 xlabel("Data Point")

 ylabel("Magnitude [Amps]")

 grid on

subplot(6, 1, 3)

 stem(Voltage_AvgMag)

 title("Average Magnitude of Battery's Voltage Drop")

 xlabel("Data Point")

 ylabel("Magnitude [Volts]")

 grid on

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

112 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

subplot(6, 1, 4)

 stem(BatteryImpedence)

 title("Magnitude of the Battery's Impedence")

 xlabel("Data Point")

 ylabel("Magnitude [Ohms]")

 grid on

subplot(6, 1, 5)

 hold on

 plot(PhaseRunner,myfit.Fitted)

 plot(PhaseRunner,Voltage_AvgMag)

 title("Sinusoidal Fit")

 xlabel("Data Points")

 ylabel("Magnitude [Volts]")

 legend('Fitted Equation','Test Points')

 grid on

 hold off

subplot(6, 1, 6)

 scatter(real(ComplexImpedence),imag(ComplexImpedence))

 title("Battery's Impedence")

 xlabel("Real (X) [Ohms]")

 ylabel("Imaginary (jY) [Ohms]")

 grid on

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

113 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Data Formatting – Python

#!/usr/bin/python

"""preprocessing.py: This script takes the terminal output of the Impedance-based BMS device and

converts from UTF-8 characters to actual voltage values read by ADC on microcontroller."""

import argparse

import binascii

import csv

import os

import sys

from pathlib import Path

#==

def formatting(currentFile, outputFile):

 readCapture = open(currentFile, "rb") # Opens & reads contents of given text file as binary

 lines = readCapture.readlines() # Stores lines into a list with one entry per line from txt file

 readCapture.close()

Closes object file

 # Initializes a list of list required to write into a CSV file

 # There are as many indicies as there is data points collected

 csvData = [[] for cell in range(0, round(len(lines[5][:]) / 2))]

 sublist_index = 0 # Index to traverse sublists

 for c in range(0, len(lines[5])-1): # Data is specifically found on line 5

 if(c % 2 == 0): # Every two characters are combined together

 adc_value = ((lines[5][c]) << 8) + lines[5][c+1] # Complete 10-bit

value from ADC

 voltage = float(adc_value) * float(5/1023) # Conversion of binary to

floating point

 csvData[sublist_index].append(voltage)

 # Appends converted value to list of lists used in making CSV file

 sublist_index += 1

 # Increases index by 1

 csvData.insert(0, ['Voltage Reading'])

 # Appends a title for the column

 del csvData[-1]

 with open(outputFile, 'w', newline='') as csvCaptureFile: # Opens and pre-

pares csv file for writing to

 writer = csv.writer(csvCaptureFile)

 writer.writerows(csvData) # Writes each sublist of csvData to newline of cap-

ture.csv

 csvCaptureFile.close() # Closes csv file

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

114 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

#==

def main():

 parser = argparse.ArgumentParser(description='Takes raw HEX data from impedance testing

and converts into Base-10 equivalent.')

 parser.add_argument('-i', '--input', help='Full filepath of folder containing raw data in txt files

from testing', required=True)

 parser.add_argument('-o', '--output', help='Full filepath of output file of the newly formatted

raw data', required=True)

 args = parser.parse_args()

 workingDirectory = Path(args.input)

 # Automatically converts given input filepath to right format for the current oper-

ating system

 if workingDirectory.exists():

 print('Woohoo, directory exists.')

 else:

 print("The given input directory does not exist.")

 sys.exit(2)

 # Exits the script

 workingFiles = os.listdir(workingDirectory)

 for files in workingFiles:

 formatting(Path(args.input + '/' + files + '/' + files + '.txt'), (args.output + '_' + files

+ '.csv'))

#==

if __name__ == "__main__":

 main()

#==

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

115 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

13.8 Appendix I: Microcontroller Code

Main Function loop

#include <avr/io.h>

#include <avr/eeprom.h>

#include "ADC.c"

#include "twimaster.c"

#include "frequency_table.c"

#include "usart.c"

#define TRUE 1 //

Defines TRUE as always being 1, used for control purposes

#define FALSE 0 //

Defines FALSE as always being 0, used for control purposes

#define NUM_DATA_POINTS (5*256) // Number of data

points to collect from ADC during acquisition

#define LENGTH(x) (sizeof(x) / sizeof((x)[0])) // Macro to determine number of elements in a given

array

// Flags used for state machine transitions, all initialized to FALSE (0)

volatile unsigned char ADC_ACQUISITION_COMPLETE = FALSE;

volatile unsigned char BUTTON_INPUT = FALSE;

volatile unsigned char USART_TRANSMISSION_COMPLETE = FALSE;

volatile unsigned char USART_RX_RECEIVED_FLAG = FALSE;

volatile unsigned char I2C_TRANSMIT_SUCESS_FLAG = FALSE;

// Global variables

volatile unsigned char USART_RECEIVED_DATA = 0x00;

volatile unsigned char voltages [(NUM_DATA_POINTS+NUM_DATA_POINTS)];

volatile unsigned char current [(NUM_DATA_POINTS+NUM_DATA_POINTS)];

// Strings sent to terminal to help user know what state they are in

char initialize_statement[] = {"Initializing. . ."};

char wait_statement[] = {"Begin test?"};

char input_statement[] = {"Choose frequency: "};

char set_statement[] = {"Setting resistor. . ."};

char acquire_statement[] = {"Acquiring Data . . ."};

char transmit_statement[] = {"Sending Data. . ."};

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

116 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

//============================== State Machine ==============================

enum States {INITIALIZE, WAIT, INPUT, SET, ACQUIRE, TRANSMIT} state;

void StateManager() {

 unsigned short voltage_reading = 0;

 // Switch statement for state transitions

 switch(state) {

 case INITIALIZE:

 break;

 case WAIT:

 if(BUTTON_INPUT == TRUE) {

 BUTTON_INPUT = FALSE;

 state = INPUT;

 }

 else {

 state = WAIT;

 }

 break;

 case INPUT:

 if(USART_RX_RECEIVED_FLAG == TRUE) {

 USART_RX_RECEIVED_FLAG = FALSE;

 state = SET;

 }

 else {

 state = INPUT;

 }

 break;

 case SET:

 if(I2C_TRANSMIT_SUCESS_FLAG == TRUE) {

 I2C_TRANSMIT_SUCESS_FLAG = FALSE;

 state = ACQUIRE;

 } else {

 state = SET;

 }

 break;

 case ACQUIRE:

 if(ADC_ACQUISITION_COMPLETE == TRUE) {

 ADC_ACQUISITION_COMPLETE = FALSE;

 state = TRANSMIT;

 }

 else {

 state = TRANSMIT;

 }

 break;

 case TRANSMIT:

 if(USART_TRANSMISSION_COMPLETE == TRUE) {

 USART_TRANSMISSION_COMPLETE = FALSE;

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

117 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

 state = WAIT;

 }

 else {

 state = TRANSMIT;

 }

 break;

 default:

 break;

 }

 //Switch statement for state actions

 switch(state) {

 case INITIALIZE:

 USART_init();

 USART_transmit_string(initialize_statement);

 ADC_init();

 init_frequency_table();

 state = WAIT;

 break;

 case WAIT:

 USART_transmit_string(wait_statement);

 while((PINC & 0x01) == 0);

 BUTTON_INPUT = TRUE;

 break;

 case INPUT:

 USART_transmit_string(input_statement);

 while (!(UCSR0A & (1 << RXC0)));

 USART_RECEIVED_DATA = UDR0;

 USART_RX_RECEIVED_FLAG = TRUE;

 break;

 case SET:

 USART_transmit_string(set_statement);

 while((PINC & 0x01) == 0);

 I2C_TRANSMIT_SUCESS_FLAG = TRUE;

 break;

 case ACQUIRE:

 USART_transmit_string(acquire_statement);

 for(unsigned int i = 0; i < LENGTH(voltages); i = i + 2) {

 voltage_reading = ADC;

 voltages[i] = (char)((voltage_reading & 0x0300) >> 8);

 voltages[i+1] = (char)(voltage_reading & 0x00FF);

 }

 switch_ADC(1);

 for(unsigned int i = 0; i < LENGTH(current); i = i + 2) {

 voltage_reading = ADC;

 current[i] = (char)((voltage_reading & 0x0300) >> 8);

 current[i+1] = (char)(voltage_reading & 0x00FF);

 }

 switch_ADC(0);

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

118 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

 ADC_ACQUISITION_COMPLETE = TRUE;

 break;

 case TRANSMIT:

 USART_transmit_string(transmit_statement);

 for(unsigned int j = 0; j < LENGTH(voltages); j++) {

 USART_transmit(voltages[j]);

 }

 for(unsigned int j = 0; j < LENGTH(current); j++) {

 USART_transmit(current[j]);

 }

 USART_transmit_newline();

 USART_TRANSMISSION_COMPLETE = TRUE;

 break;

 default:

 state = INITIALIZE;

 break;

 }

}

int main(void) {

 DDRC = 0xFE; PORTC = 0x00; // Configure PORTC PIN0 as input, initialize

to 0s

 state = INITIALIZE; // Makes the first state Initialize on startup

 while (1) {

 StateManager();

 }

}

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

119 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

ADC.C Header

void ADC_init(void) {

 ADMUX = 0x00; //Default value

 ADCSRA |= (1 << ADEN) | (1 << ADSC) | (1 << ADATE);

 // ADCSRA = 0xC0

 // Current configuration is Single Conversion mode.

 // ADEN: setting this bit enables analog-to-digital conversion.

 // ADSC: setting this bit starts the conversion.

 // Current configuration has Vin connected to PA0.

 // The AREF (Vref) pin is connected directly to the +5 Volt power supply

 // AREF is the pin located between PA7 and the ground pin.

}

// Right now, only switches ADC to channel 1

void switch_ADC(unsigned char whichADC) {

 if(whichADC == 1) ADMUX = 0x01;

 else {

 ADMUX = 0x00;

 }

 ADCSRA |= (1 << ADEN) | (1 << ADSC) | (1 << ADATE);

 // ADCSRA = 0xC0

 // Current configuration is Single Conversion mode.

 // ADEN: setting this bit enables analog-to-digital conversion.

 // ADSC: setting this bit starts the conversion.

 // Current configuration has Vin connected to PA0.

 // The AREF (Vref) pin is connected directly to the +5 Volt power supply

 // AREF is the pin located between PA7 and the ground pin.

}

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

120 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Twimaster.c Header file
/***

* Title: I2C master library using hardware TWI interface

* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury

* File: $Id: twimaster.c,v 1.4 2015/01/17 12:16:05 peter Exp $

* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3

* Target: any AVR device with hardware TWI

* Usage: API compatible with I2C Software Library i2cmaster.h

**/

#include <inttypes.h>

#include <compat/twi.h>

#include <i2cmaster.h>

/* define CPU frequency in hz here if not defined in Makefile */

#ifndef F_CPU

#define F_CPU 8000000UL

#endif

/* I2C clock in Hz */

#define SCL_CLOCK 100000L

/***

 Initialization of the I2C bus interface. Need to be called only once

***/

void i2c_init(void)

{

 /* initialize TWI clock: 100 kHz clock, TWPS = 0 => prescaler = 1 */

 TWSR = 0; /* no prescaler */

 TWBR = ((F_CPU/SCL_CLOCK)-16)/2; /* must be > 10 for stable operation */

}/* i2c_init */

/***

 Issues a start condition and sends address and transfer direction.

 return 0 = device accessible, 1= failed to access device

***/

unsigned char i2c_start(unsigned char address)

{

 uint8_t twst;

 // send START condition

 TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);

 // wait until transmission completed

 while(!(TWCR & (1<<TWINT)));

 // check value of TWI Status Register. Mask prescaler bits.

 twst = TW_STATUS & 0xF8;

 if ((twst != TW_START) && (twst != TW_REP_START)) return 1;

 // send device address

 TWDR = address;

 TWCR = (1<<TWINT) | (1<<TWEN);

 // wail until transmission completed and ACK/NACK has been received

 while(!(TWCR & (1<<TWINT)));

 // check value of TWI Status Register. Mask prescaler bits.

 twst = TW_STATUS & 0xF8;

 if ((twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK)) return 1;

 return 0;

}/* i2c_start */

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

121 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

/***

 Issues a start condition and sends address and transfer direction.

 If device is busy, use ack polling to wait until device is ready

 Input: address and transfer direction of I2C device

***/

void i2c_start_wait(unsigned char address)

{

 uint8_t twst;

 while (1)

 {

 // send START condition

 TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);

 // wait until transmission completed

 while(!(TWCR & (1<<TWINT)));

 // check value of TWI Status Register. Mask prescaler bits.

 twst = TW_STATUS & 0xF8;

 if ((twst != TW_START) && (twst != TW_REP_START)) continue;

 // send device address

 TWDR = address;

 TWCR = (1<<TWINT) | (1<<TWEN);

 // wail until transmission completed

 while(!(TWCR & (1<<TWINT)));

 // check value of TWI Status Register. Mask prescaler bits.

 twst = TW_STATUS & 0xF8;

 if ((twst == TW_MT_SLA_NACK)||(twst ==TW_MR_DATA_NACK))

 {

 /* device busy, send stop condition to terminate write operation */

 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

 // wait until stop condition is executed and bus released

 while(TWCR & (1<<TWSTO));

 continue;

 }

 //if(twst != TW_MT_SLA_ACK) return 1;

 break;

 }

}/* i2c_start_wait */

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

122 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

/***

 Issues a repeated start condition and sends address and transfer direction

 Input: address and transfer direction of I2C device

 Return: 0 device accessible

 1 failed to access device

***/

unsigned char i2c_rep_start(unsigned char address)

{

 return i2c_start(address);

}/* i2c_rep_start */

/***

 Terminates the data transfer and releases the I2C bus

***/

void i2c_stop(void)

{

 /* send stop condition */

 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);

 // wait until stop condition is executed and bus released

 while(TWCR & (1<<TWSTO));

}/* i2c_stop */

/***

 Send one byte to I2C device

 Input: byte to be transfered

 Return: 0 write successful

 1 write failed

***/

unsigned char i2c_write(unsigned char data)

{

 uint8_t twst;

 // send data to the previously addressed device

 TWDR = data;

 TWCR = (1<<TWINT) | (1<<TWEN);

 // wait until transmission completed

 while(!(TWCR & (1<<TWINT)));

 // check value of TWI Status Register. Mask prescaler bits

 twst = TW_STATUS & 0xF8;

 if(twst != TW_MT_DATA_ACK) return 1;

 return 0;

}/* i2c_write */

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

123 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

/***

 Read one byte from the I2C device, request more data from device

 Return: byte read from I2C device

***/

unsigned char i2c_readAck(void)

{

 TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);

 while(!(TWCR & (1<<TWINT)));

 return TWDR;

}/* i2c_readAck */

/***

 Read one byte from the I2C device, read is followed by a stop condition

 Return: byte read from I2C device

***/

unsigned char i2c_readNak(void)

{

 TWCR = (1<<TWINT) | (1<<TWEN);

 while(!(TWCR & (1<<TWINT)));

 return TWDR;

}/* i2c_readNak */

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

124 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

Frequency.c Header file

#define NUM_FREQUENCIES 100 // Number of frequencies available to set for testing

// Defining a variable type that has two fields

struct Frequencies {

 unsigned char terminal_value;

 unsigned char set_value;

 double adc_delay;

};

// Initializes array of struct Frequencies

struct Frequencies frequency_table[NUM_FREQUENCIES];

// Order is important

unsigned char resistance_hex[NUM_FREQUENCIES] = {

 0xFF, 0x3F, 0x24, 0x19, 0x13, 0x0F, 0x0D, 0x0B, 0x0A, 0x09,

 0x08, 0x07, 0x06, 0x06, 0x05, 0x05, 0x05, 0x05, 0x04, 0x04,

 0x04, 0x04, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03,

 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0xFF, 0xC4, 0x9F,

 0x86, 0x74, 0x66, 0x5B, 0x52, 0x4B, 0x45, 0x3F, 0x3B, 0x37,

 0x34, 0x31, 0x2E, 0x2C, 0x2A, 0x29, 0x27, 0x26, 0x24, 0x23,

 0x03, 0x20, 0x1F, 0x1E, 0x1D, 0x1C, 0x1B, 0x1A, 0x19, 0x15,

 0x13, 0x0F, 0x0D, 0x0B, 0x0A, 0x09, 0x08, 0x07, 0x06, 0x06,

 0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x04, 0x03, 0x03,

 0x03, 0x03, 0x03, 0x03, 0x03, 0x02, 0x02, 0x02, 0x02, 0x02

};

// Order is important

double delay[NUM_FREQUENCIES] = {

 0.390, 0.098, 0.056, 0.039, 0.030, 0.024, 0.020, 0.018, 0.016,

 0.014, 0.013, 0.011, 0.010, 0.090, 0.009, 0.008, 0.008, 0.008,

 0.007, 0.007, 0.007, 0.006, 0.006, 0.006, 0.006, 0.005, 0.005,

 0.005, 0.005, 0.004, 0.004, 0.004, 0.004, 0.004, 0.004, 0.001,

 0,

 0,

 0, 0, 0, 0, 0, 0, 0, 0

};

// Assigns array values to specific structs

void init_frequency_table(void) {

 for(unsigned char i = 0; i <= (NUM_FREQUENCIES-1); i++) {

 frequency_table[i].terminal_value = (i+1);

 frequency_table[i].set_value = resistance_hex[i];

 frequency_table[i].adc_delay = delay[i];

 }

}

JG3

Dept. of Electrical and Computer Engineering, UCR

EE175AB Final Report: Battery Impedance

June 10, 2019; Version 2.0

125 of 125

Copyright © 2019 Gatfield, J. , Gu, J. , Gozum, J., et al., University of California

USART.c Header

#define BAUDRATE 51//ATMEGA1284P data sheet suggests this value to produce ~9600 bps baud

rate

void USART_init(void) {

 // USART initialization

 // Communication parameters: 8 data bits, 1 stop bit, no parity checking

 // USART Transmitter: ON

 // USART Receiver: ON

 // USART Mode: Asynchronous

 // USART Baud Rate: 9600 bps

 UBRR0 = BAUDRATE; // Sets baud rate

 UCSR0B = (1 << RXEN0) | (1 << TXEN0); // Enable transmitter and receiver

 UCSR0C = (1 << UCSZ01) | (1 << UCSZ00); // Enables 1 stop bit mode

}

void USART_transmit(char data) {

 // Wait for empty transmit buffer

 while(!(UCSR0A & (1 << UDRE0)));

 // Put data into buffer, sends the data

 UDR0 = data;

}

void USART_transmit_newline(void) {

 USART_transmit(0x0D);

 USART_transmit(0x0A);

}

void USART_transmit_string(char string[]) {

 unsigned char i = 0;

 while(string[i] != 0x00) {

 USART_transmit(string[i]);

 i++;

 }

 USART_transmit_newline();

}

unsigned char USART_receive(void) {

 // Wait for data to be received

 while (!(UCSR0A & (1 << RXC0)));

 // Get and return received data from buffer

 return UDR0;

}

